Difference between revisions of "Published Papers"

From Hyrel3D
Jump to: navigation, search
(Published in 2022)
(Count)
(34 intermediate revisions by the same user not shown)
Line 7: Line 7:
 
== Count ==
 
== Count ==
  
371 documents as of 4 October, 2022.
+
389 documents as of 26 January, 2023.
  
 
== Non-Traditional Manufacturing ==
 
== Non-Traditional Manufacturing ==
Line 90: Line 90:
  
 
Also known as Robocasting or DIW (Direct Ink Writing).
 
Also known as Robocasting or DIW (Direct Ink Writing).
 +
 +
==== Published in 2023 ====
 +
 +
* [https://www.sciencedirect.com/science/article/abs/pii/S2214860423000386 Material Extrusion of Highly-Loaded Silicon Nitride Aqueous Inks for Solid Infilled Structures] by a team from [https://www.afrl.af.mil/RX/ Materials and Manufacturing Directorate, Air Force Research Laboratory], [https://sites.nationalacademies.org/PGA/RAP/index.htm National Research Council Research Associate Program], [https://www.ues.com/ UES, Inc.], [https://www.soche.org/ Strategic Ohio Council for Higher Education], and [https://www.ge.com/research/ General Electric Research]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acsanm.2c05423 Printed Carbon Nanotube-Based Humidity Sensors Deployable on Surfaces of Widely Varying Curvatures] by a team from the [https://enme.umd.edu/ Department of Mechanical Engineering of the University of Maryland]
 +
* [https://www.sciencedirect.com/science/article/abs/pii/S2352710223000530 Nanomechanical Characterization of 3D Printed Cement Pastes] by a team from [https://www.vanderbilt.edu/ Vanderbilt University's [https://engineering.vanderbilt.edu/chbe/ Department of Chemical and Biomolecular Engineering] and [https://engineering.vanderbilt.edu/cee/ Department of Civil and Environment Engineering]
 +
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202207673 Triplet Fusion Upconversion for Photocuring 3D Printed Particle-Reinforced Composite Networks] by a team from the [https://chem.washington.edu/ Department of Chemistry, University of Washington] and the [https://www.chem.columbia.edu/ Department of Chemistry, Columbia University]
  
 
==== Published in 2022 ====
 
==== Published in 2022 ====
  
 +
* [https://www.sciencedirect.com/science/article/abs/pii/S0958946522004875 Halloysite Reinforced 3D-printable Geopolymers] by a team from [https://www.dtu.dk/english The Technical University of Denmark]'s Departments of [https://orbit.dtu.dk/en/organisations/department-of-civil-and-mechanical-engineering Civil & Mechanical Engineering], [https://www.fysik.dtu.dk/english Physics], [https://www.healthtech.dtu.dk/english Heath Technology], and [https://www.nanolab.dtu.dk/english Nanolab], as well as the [https://www.imperial.ac.uk/civil-engineering/ Department of Civil and Environmental Engineering, Imperial College London]
 +
* [https://iopscience.iop.org/article/10.1088/2058-8585/aca813/meta Direct Ink Write 3D printing of Wave Propagation Sensor] by a team from [http://lanl.gov  Los Alamos National Laboratory] and from [http://utep.edu The University of Texas at El Paso
 +
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/pat.5948 3D-printable Cyclic Peptide Loaded Microporous Polymers for Antimicrobial Wound Dressing Materials] by a team from the [https://www.nrl.navy.mil/chemistry/ Chemistry Division, U.S. Naval Research Laboratory]
 +
* [https://www.sciencedirect.com/science/article/pii/S2405886622000598 MultimodalIimaging Compatible Micro-Physiological System] by a team from [https://www.texaschildrens.org/departments/radiology Department of Radiology, Texas Children's Hospital] and [https://www.bcm.edu/ Baylor College of Medicine]'s Departments of [https://www.bcm.edu/departments/radiology Radiology] and [https://www.bcm.edu/academic-centers/dan-l-duncan-comprehensive-cancer-center/research/programs/pediatric-cancer-program Pediatrics-Oncology]
 +
* [https://www.sciencedirect.com/science/article/abs/pii/S2214860422006376 Electric poling-assisted additive manufacturing technique for piezoelectric active poly(vinylidene fluoride) films: Towards fully three-dimensional printed functional materials] by a team from [https://purdue.edu/ Purdue University]'s [https://polytechnic.purdue.edu/schools/engineering-technology School of Engineering Technology], [https://engineering.purdue.edu/MSE School of Materials Engineering], and [https://engineering.purdue.edu/IE School of Industrial Engineering],
 +
* [https://www.proquest.com/openview/94671663c312abf32560fbd499dcfdfe/ Extrusion-Based 3D Printing of Stretchable Electronic Coating for Condition Monitoring of Suction Cups] by a team from [https://lgef.insa-lyon.fr/ Laboratoire de Génie Electrique, INSA Lyon] and [https://hybria.fr/en/home/ Hybria Institute of Business and Technologies, Écully Campus]
 +
* [https://www.researchgate.net/profile/Josh-Kacher/publication/355675319_Fabrication_of_3D_Printed_Complex_Concentrated_Alloys_using_Oxide_Precursors/links/6320eccf071ea12e362ecfdc/Fabrication-of-3D-Printed-Complex-Concentrated-Alloys-using-Oxide-Precursors.pdf Fabrication of 3D Printed Complex cConcentrated Alloys using Oxide Precursors] by a team from [http://gatech.edu Georgia Tech]'s [https://www.mse.gatech.edu/ School of Materials Science and Engineering] and [https://bme.gatech.edu/bme/ Department of Biomedical Engineering]
 +
* [https://link.springer.com/article/10.1557/s43579-022-00287-1 3D-Printed PDMS-based Membranes for CO<sub>2</sub> Separation Applications] by a team from [https://www.ornl.gov/ Oak Ridge National Labratory]'s [https://www.ornl.gov/facility/cnms Center for Nanophase Materials and Sciences] and [https://www.ornl.gov/division/csd Chemical Sciences Division], the [https://engineering.case.edu/macromolecular-science-and-engineering Department of Macromolecular Sciences and Engineering, Case Western Reserve University], the [https://research.utk.edu/iamm/ Institute for Advanced Materials and Manufacturing, University of Tennessee Research Park], the [https://dmmme.coe.upd.edu.ph/ Department of Mining, Metallurgical, and Materials Engineering, University of the Philippines], the [https://www.ndsu.edu/cpm/ Department of Coatings and Polymeric Materials, North Dakota State University], and [https://www.utk.edu/ University of Tennessee, Knoxville]'s [https://cbe.utk.edu/ Department of Chemical and Biomolecular Engineering] and [https://chem.utk.edu/ Department of Chemistry]
 
* [https://www.osti.gov/servlets/purl/1890799 Performance of Lithium-Ion Batteries with 3D Printed Anodes and Compressible Carbon Structures], by [https://www.llnl.gov/ Lawrence Livermore National Laboratory]
 
* [https://www.osti.gov/servlets/purl/1890799 Performance of Lithium-Ion Batteries with 3D Printed Anodes and Compressible Carbon Structures], by [https://www.llnl.gov/ Lawrence Livermore National Laboratory]
* [https://sigma.yildiz.edu.tr/storage/upload/pdfs/1663838519-en.pdf Controlled Release of Metformin-Loaded SA/PEG Scaffolds produced by
+
* [https://sigma.yildiz.edu.tr/storage/upload/pdfs/1663838519-en.pdf Controlled Release of Metformin-Loaded SA/PEG Scaffolds] produced by 3D-Printing Technology], published by [https://eds.yildiz.edu.tr/ Yildiz Technical University Press]
3D-Printing Technology], published by [https://eds.yildiz.edu.tr/ Yildiz Technical University Press]
 
 
* [https://pubs.acs.org/doi/abs/10.1021/acs.biomac.2c00860 Thermal and UV Curable Formulations of Poly(propylene glycol)–Poly(hydroxyurethane) Elastomers toward Nozzle-Based 3D Photoprinting] by a team from the [https://www.uliege.be/ University of Liège]
 
* [https://pubs.acs.org/doi/abs/10.1021/acs.biomac.2c00860 Thermal and UV Curable Formulations of Poly(propylene glycol)–Poly(hydroxyurethane) Elastomers toward Nozzle-Based 3D Photoprinting] by a team from the [https://www.uliege.be/ University of Liège]
 
* [https://www.sciencedirect.com/science/article/pii/S2214785322058175 Mechanical Characterization of 3D-Printed Silicone/Epoxy Hybrids] by a team from the Digital Manufacturing and Design Centre and the Engineering and Product Development Pillar of the [https://www.sutd.edu.sg/ Singapore University of Technology and Design]
 
* [https://www.sciencedirect.com/science/article/pii/S2214785322058175 Mechanical Characterization of 3D-Printed Silicone/Epoxy Hybrids] by a team from the Digital Manufacturing and Design Centre and the Engineering and Product Development Pillar of the [https://www.sutd.edu.sg/ Singapore University of Technology and Design]
Line 108: Line 122:
 
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/admt.202200534 A Comparative Study of Silver Microflakes in Digitally Printable Liquid Metal Embedded Elastomer Inks for Stretchable Electronics] by a team from the [https://www.meche.engineering.cmu.edu/ Department of Mechanical Engineering, Carnegie Mellon University] and the [https://www.uc.pt/en/fctuc/deec/Department Department of Electrical Engineering, University of Coimbra]
 
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/admt.202200534 A Comparative Study of Silver Microflakes in Digitally Printable Liquid Metal Embedded Elastomer Inks for Stretchable Electronics] by a team from the [https://www.meche.engineering.cmu.edu/ Department of Mechanical Engineering, Carnegie Mellon University] and the [https://www.uc.pt/en/fctuc/deec/Department Department of Electrical Engineering, University of Coimbra]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S0021979722012097 Hybrid Colloidal Gels with Tunable Elasticity Formed by Charge-Driven Assembly between Spherical Soft Nanoparticles and Discotic Nanosilicates] by a team from the [https://sc.edu/study/colleges_schools/engineering_and_computing/departments/chemical_engineering/index.php Department of Chemical Engineering] and the [https://sc.edu/study/colleges_schools/engineering_and_computing/departments/biomedical_engineering/index.php Biomedical Engineering Program ] of the [https://sc.edu/ University of South Carolina]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S0021979722012097 Hybrid Colloidal Gels with Tunable Elasticity Formed by Charge-Driven Assembly between Spherical Soft Nanoparticles and Discotic Nanosilicates] by a team from the [https://sc.edu/study/colleges_schools/engineering_and_computing/departments/chemical_engineering/index.php Department of Chemical Engineering] and the [https://sc.edu/study/colleges_schools/engineering_and_computing/departments/biomedical_engineering/index.php Biomedical Engineering Program ] of the [https://sc.edu/ University of South Carolina]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/adem.202200485 Effect of Additive Manufacturing onβ-PhasePoly(Vinylidene Fluoride)-Based Capacitive TemperatureSensors] by a team from the [https://polytechnic.purdue.edu/schools/engineering-technology School of Engineering Technology, Purdue University]
+
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/adem.202200485 Effect of Additive Manufacturing onß-PhasePoly(Vinylidene Fluoride)-Based Capacitive TemperatureSensors] by a team from the [https://polytechnic.purdue.edu/schools/engineering-technology School of Engineering Technology, Purdue University]
 
* [https://pubs.acs.org/doi/abs/10.1021/acsbiomaterials.2c00313 Silk Fibroin as a Bioink – A Thematic Review of Functionalization Strategies for Bioprinting Applications] by a team from the [https://www.nus.edu.sg/ National University of Singapore]
 
* [https://pubs.acs.org/doi/abs/10.1021/acsbiomaterials.2c00313 Silk Fibroin as a Bioink – A Thematic Review of Functionalization Strategies for Bioprinting Applications] by a team from the [https://www.nus.edu.sg/ National University of Singapore]
 
* [https://link.springer.com/chapter/10.1007/978-3-031-06116-5_26 Evaluation of Durability of 3D-Printed Cementitious Materials for Potential Applications in Structures Exposed to Marine Environments] by a team primarily from the [https://engineering.purdue.edu/CE Lyles School of Civil Engineering, Purdue University]
 
* [https://link.springer.com/chapter/10.1007/978-3-031-06116-5_26 Evaluation of Durability of 3D-Printed Cementitious Materials for Potential Applications in Structures Exposed to Marine Environments] by a team primarily from the [https://engineering.purdue.edu/CE Lyles School of Civil Engineering, Purdue University]
Line 218: Line 232:
 
* [https://www.sciencedirect.com/science/article/abs/pii/S0955221920306336 Effects of SiO2 Inclusions on Sintering and Permeability of NiCuZn Ferrite for Additive Manufacturing of Power Magnets] by a multi-disciplinary team from [https://vt.edu/ Virginia Tech]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S0955221920306336 Effects of SiO2 Inclusions on Sintering and Permeability of NiCuZn Ferrite for Additive Manufacturing of Power Magnets] by a multi-disciplinary team from [https://vt.edu/ Virginia Tech]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S0955221920306063#! Transparent Alumina Ceramics Fabricated by 3D Printing and Vacuum Sintering] by a team from the [https://www.alfred.edu/academics/colleges-schools/engineering/index.cfm Kazuo Inamori School of Engineering], [https://www.alfred.edu/academics/colleges-schools/college-ceramics/index.cfm New York State College of Ceramics], [https://www.alfred.edu/ Alfred University, Alfred, NY]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S0955221920306063#! Transparent Alumina Ceramics Fabricated by 3D Printing and Vacuum Sintering] by a team from the [https://www.alfred.edu/academics/colleges-schools/engineering/index.cfm Kazuo Inamori School of Engineering], [https://www.alfred.edu/academics/colleges-schools/college-ceramics/index.cfm New York State College of Ceramics], [https://www.alfred.edu/ Alfred University, Alfred, NY]
* [https://aip.scitation.org/doi/full/10.1063/5.0004120 Additive Manufacturing and Characterization of AgI and AgI–Al2O3 Composite Electrolytes for Resistive Switching Devices], a paper from the [https://afresearchlab.com/ US Air Force Research Laboratory] using a Nordsen head on a Hyrel printer.
+
* [https://aip.scitation.org/doi/full/10.1063/5.0004120 Additive Manufacturing and Characterization of AgI and AgI–Al2O3 Composite Electrolytes for Resistive Switching Devices], a paper from the [https://afresearchlab.com/ US Air Force Research Laboratory] using a Nordson head on a Hyrel printer.
 
* [https://cdn.vanderbilt.edu/vu-my/wp-content/uploads/sites/2814/2020/06/19085235/Neely_Dissertation.pdf Additively Manufactured Thermite-based Energetics: Characterization and Applications], a PhD dissertation submitted to the [https://engineering.vanderbilt.edu/me/ Mechanical Enginnering Department of Vanderbilt University]
 
* [https://cdn.vanderbilt.edu/vu-my/wp-content/uploads/sites/2814/2020/06/19085235/Neely_Dissertation.pdf Additively Manufactured Thermite-based Energetics: Characterization and Applications], a PhD dissertation submitted to the [https://engineering.vanderbilt.edu/me/ Mechanical Enginnering Department of Vanderbilt University]
 
* [https://iopscience.iop.org/article/10.1088/1748-605X/aba40c/meta Effect of Sterilization Treatment on Mechanical Properties, Biodegradation, Bioactivity and Printability of GelMA Hydrogels (in Tissue Engineering)] by a team from the [https://uwaterloo.ca/waterloo-composite-biomaterial-systems-lab/ Composite Biomaterial Systems Laboratory of the University of Waterloo]
 
* [https://iopscience.iop.org/article/10.1088/1748-605X/aba40c/meta Effect of Sterilization Treatment on Mechanical Properties, Biodegradation, Bioactivity and Printability of GelMA Hydrogels (in Tissue Engineering)] by a team from the [https://uwaterloo.ca/waterloo-composite-biomaterial-systems-lab/ Composite Biomaterial Systems Laboratory of the University of Waterloo]
* [https://www.sciencedirect.com/science/article/pii/S0266353819335791 Impact of Filler Composition on Mechanical and Dynamic Response of 3-D Printed Silicone-based Nanocomposite Elastomers] using a [https://www.nordson.com/en Nordson Ultimus™ V] dispenser on Hyrel equipment, but a team from [http://lanl.gov Los Alamos National Laboratory], [http://sandia.gov Sandia National Laboratory], and [https://www.natureindex.com/institution-outputs/south-korea/department-of-energy-engineering-gntech/595e2817140ba06b4e8b4569 Department of Energy Engineering, Gyeongnam National University of Science and Technology (South Korea)]
+
* [https://www.sciencedirect.com/science/article/pii/S0266353819335791 Impact of Filler Composition on Mechanical and Dynamic Response of 3-D Printed Silicone-based Nanocomposite Elastomers] using a [https://www.nordson.com/en Nordson Ultimus™ V] dispenser on Hyrel equipment, by a team from [http://lanl.gov Los Alamos National Laboratory], [http://sandia.gov Sandia National Laboratory], and [https://www.natureindex.com/institution-outputs/south-korea/department-of-energy-engineering-gntech/595e2817140ba06b4e8b4569 Department of Energy Engineering, Gyeongnam National University of Science and Technology (South Korea)]
 
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.202000311 Fabrication and Characterization of Fe<sub>16</sub>N<sub>2</sub> Micro‐Flake Powders and Their Extrusion Based 3D Printing into Permanent Magnet Form] by a multi-disciplinary, multi-university team from Istanbul, Turkey
 
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.202000311 Fabrication and Characterization of Fe<sub>16</sub>N<sub>2</sub> Micro‐Flake Powders and Their Extrusion Based 3D Printing into Permanent Magnet Form] by a multi-disciplinary, multi-university team from Istanbul, Turkey
 
* [https://patents.google.com/patent/US20200181014A1/en Cement-Based Direct Ink for 3D Printing of Complex Architected Structures ], a patent application by a team including members of [https://msne.rice.edu/ Department of Materials Science and NanoEngineering, Rice University]
 
* [https://patents.google.com/patent/US20200181014A1/en Cement-Based Direct Ink for 3D Printing of Complex Architected Structures ], a patent application by a team including members of [https://msne.rice.edu/ Department of Materials Science and NanoEngineering, Rice University]
Line 335: Line 349:
  
 
Also known as DPE (Direct Powder Extrusion) or HME (Hot Melt Extrusion).
 
Also known as DPE (Direct Powder Extrusion) or HME (Hot Melt Extrusion).
 +
 +
==== Published in 2023 ====
 +
 +
* [https://aip.scitation.org/doi/full/10.1063/5.0133995 Do we need perfect mixing between fuel and oxidizer to maximize the energy release rate of energetic nanocomposites?] by a team from the [https://www.cee.ucr.edu/ Department of Chemical and Environmental Engineering, University of California, Riverside] and the [https://me.stanford.edu/ Department of Mechanical Engineering, Stanford University]
  
 
==== Published in 2022 ====
 
==== Published in 2022 ====
  
 +
* [https://pubs.acs.org/doi/abs/10.1021/acsami.2c14815 3D Printing of Liquid Metal Embedded Elastomers for Soft Thermal and Electrical Materials] by a team from [https://www.cmu.edu/ Carnegie Mellon University]'s  [https://www.meche.engineering.cmu.edu/ Mechanical] and [https://www.cheme.engineering.cmu.edu/ Chemical] Engineering Departments; the [https://www.erg.cuhk.edu.hk/erg/MechanicalAndAutomationEngineering Department of Mechanical and Automation Engineering, Chinese University of Hong Kong], and the [https://me.snu.ac.kr/en Department of Mechanical Engineering, Seoul National University]
 +
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/aisy.202200280 Robotic Pick-and-Place Operations in Multifunctional Liquid Crystal Elastomers] by a team from [https://www.tue.nl/en/ Eindhoven University of Technology]'s [https://www.tue.nl/en/research/institutes/institute-for-complex-molecular-systems/ Institute for Complex Molecular Systems] and [https://www.tue.nl/en/our-university/departments/chemical-engineering-and-chemistry/the-department/ Department of Chemical Engineering and Chemistry], the [https://inma.unizar-csic.es/en/home/ Instituto de Nanociencia y Materiales de Aragón (INMA)Departamento de Física de la Materia CondensadaCSIC-Universidad de Zaragoza], the [https://www.ciber-bbn.es/en CIBER in Bioengineering, Biomaterials and Nanomedicine], and the [ SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University]
 +
* [https://asmedigitalcollection.asme.org/SMASIS/proceedings-abstract/SMASIS2022/86274/V001T05A006/1150813 Development of Embeddable Additive Manufacturing Microsensors for Structural Health Monitoring], by a team from [https://erau.edu/ Embry-Riddle Aeronautical University]
 
* [https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=4693&context=etd Continuous, Non-Destructive Detection of Surface Bacterial Growth with Bioinspired Vascularized PolymersGrowth with Bioinspired Vascularized Polymers], submitted to the University of Maine in pursuit of a Master of Science in Biomedical Engineering
 
* [https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=4693&context=etd Continuous, Non-Destructive Detection of Surface Bacterial Growth with Bioinspired Vascularized PolymersGrowth with Bioinspired Vascularized Polymers], submitted to the University of Maine in pursuit of a Master of Science in Biomedical Engineering
 
* [https://www.chinesechemsoc.org/doi/pdf/10.31635/ccschem.022.202202362 A Novel Dynamic Polymer Synthesis via Chlorinated Solvent Quenched Depolymerization] by a team from [https://www.ornl.gov Oak Ridge National Laboratory]'s [https://www.ornl.gov/division/csd Chemical Services Division] and [https://www.ornl.gov/facility/cnms Center for Nanophase Materials Sciences]; [https://utk.edu/ University of Tennessee, Knoxville]'s [https://chem.utk.edu/ Department of Chemistry] and [https://cbe.utk.edu/ Department of Chemical and Biomolecular Engineering]; and [https://jiaowuchu.buct.edu.cn/en_jwc/mainm.htm Beijing University of Chemical Technology]
 
* [https://www.chinesechemsoc.org/doi/pdf/10.31635/ccschem.022.202202362 A Novel Dynamic Polymer Synthesis via Chlorinated Solvent Quenched Depolymerization] by a team from [https://www.ornl.gov Oak Ridge National Laboratory]'s [https://www.ornl.gov/division/csd Chemical Services Division] and [https://www.ornl.gov/facility/cnms Center for Nanophase Materials Sciences]; [https://utk.edu/ University of Tennessee, Knoxville]'s [https://chem.utk.edu/ Department of Chemistry] and [https://cbe.utk.edu/ Department of Chemical and Biomolecular Engineering]; and [https://jiaowuchu.buct.edu.cn/en_jwc/mainm.htm Beijing University of Chemical Technology]
Line 412: Line 433:
 
==== Published in 2022 ====
 
==== Published in 2022 ====
  
 +
* [https://arxiv.org/pdf/2210.17274.pdf Imbalanced Data Classification via Generative Adversarial Network with Application to Anomaly Detection in Additive Manufacturing Process] by a team from the [https://www.ise.vt.edu/ Grado Department of Industrial and Systems Engineering, Virginia Tech] and the [https://mie.njit.edu/ Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology]
 +
* [https://arxiv.org/ftp/arxiv/papers/2210/2210.17272.pdf Reinforcement Learning-based Defect Mitigation for Quality Assurance of Additive Manufacturing] by a team from the [https://www.ise.vt.edu/ Grado Department of Industrial and Systems Engineering, Virginia Tech] and the [https://mie.njit.edu/ Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology]
 
* [https://books.google.com/books?hl=en&lr=lang_en&id=5XeGEAAAQBAJ&oi=fnd&pg=PA225&dq=hyrel&ots=z5RCHfPoi-&sig=QZbo_KqifYORnJ4Ujgr6rZ3GSc4#v=onepage&q&f=false Fabrication of Polycarbonate Filaments Infused with Carbon from Coconut Shell Powder for 3D Printing Applications] by a team from [https://www.tuskegee.edu/programs-courses/colleges-schools/coe/materials-science-and-engineering-home Tuskegee University's Department of Materials Science and Engineering (MSE)]
 
* [https://books.google.com/books?hl=en&lr=lang_en&id=5XeGEAAAQBAJ&oi=fnd&pg=PA225&dq=hyrel&ots=z5RCHfPoi-&sig=QZbo_KqifYORnJ4Ujgr6rZ3GSc4#v=onepage&q&f=false Fabrication of Polycarbonate Filaments Infused with Carbon from Coconut Shell Powder for 3D Printing Applications] by a team from [https://www.tuskegee.edu/programs-courses/colleges-schools/coe/materials-science-and-engineering-home Tuskegee University's Department of Materials Science and Engineering (MSE)]
 
* [https://vtechworks.lib.vt.edu/bitstream/handle/10919/111434/Law_A_D_2022.pdf?sequence=1 Smart Quality Assurance System for Additive Manufacturing using Data-driven based Parameter-Signature-Quality Framework], a dissertation submitted to [https://vt.edu/academics/majors/industrial-and-systems-engineering.html Virginia Tech's Industrial and Systems Engineering department]
 
* [https://vtechworks.lib.vt.edu/bitstream/handle/10919/111434/Law_A_D_2022.pdf?sequence=1 Smart Quality Assurance System for Additive Manufacturing using Data-driven based Parameter-Signature-Quality Framework], a dissertation submitted to [https://vt.edu/academics/majors/industrial-and-systems-engineering.html Virginia Tech's Industrial and Systems Engineering department]

Revision as of 13:14, 26 January 2023

Below is a list of published works citing Hyrel equipment.

Count

389 documents as of 26 January, 2023.

Non-Traditional Manufacturing

Including Antennas, Sensors, Inductors, and Circuits; Combined Manufacturing Techniques; Electro-Spinning or Electro-Melt-Spinning or Melt Electro-Writing (MEW); also printing with Embedded Fibers and combining FDM with DIW or MEW.

Published in 2022

Published in 2021

Published in 2020

Published in 2019

Published in 2018

Published in 2017

Published in 2016

Published in 2015

Unheated or Chilled Reservoir Printing (DIW)

Also known as Robocasting or DIW (Direct Ink Writing).

Published in 2023

Published in 2022

Published in 2021

Published in 2020

Published in 2019

Published in 2018

Published in 2017

Published in 2016

Published in 2015

Published in 2014

Heated Reservoir Printing (DPE, HME)

Also known as DPE (Direct Powder Extrusion) or HME (Hot Melt Extrusion).

Published in 2023

Published in 2022

Published in 2021

Published in 2020

Published in 2019

Published in 2018

Published in 2017

Filament Printing (HME, FFF, FDM)

Also known as HME (Hot Melt Extrusion), FFF (Fused Filament Fabrication), or FDM (Fused Deposition Modeling).

Published in 2022

Published in 2021

Published in 2020

Published in 2019

Published in 2018

Published in 2017

Published in 2016