Difference between revisions of "Published Papers"

From Hyrel3D
Jump to: navigation, search
(Published in 2023)
(Count)
(47 intermediate revisions by the same user not shown)
Line 7: Line 7:
 
== Count ==
 
== Count ==
  
403 documents as of 14 March, 2023.
+
425 documents as of 30 May, 2023.
  
 
== Non-Traditional Manufacturing ==
 
== Non-Traditional Manufacturing ==
Line 15: Line 15:
 
==== Published in 2023 ====
 
==== Published in 2023 ====
  
 +
* [https://www.mdpi.com/2076-0825/12/5/189 Characteristic Analysis of Heterochiral TCP Muscle as a Extensile Actuator for Soft Robotics Applications] by a team from the [https://cec.georgiasouthern.edu/manufacturing-engineering/ Department of Manufacturing Engineering, Georgia Southern University]
 +
* [https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/ell2.12749 3D-Printed Elastomer Ternary Composites for  Piezoelectric Energy Generation] by a team from several departments of [https://www.tuskegee.edu/ Tuskegee University]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acsanm.2c05140 Biomimetic Flexible Electronic Materials from Silk Fibroin-MXene Composites Developed via Mussel-Inspired Chemistry as Wearable Pressure Sensors] by a team from the [https://chemie.uni-koeln.de/en/research/institute-of-inorganic-chemistry Institute of Inorganic Chemistry, Department of Chemistry, University of Cologne], [https://www.healthtech.dtu.dk/ Department of Health Technology, Technical University of Denmark], and [https://www.cmmc-uni-koeln.de/home Institute of Inorganic Chemistry, Department of Chemistry, University of Cologne]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acs.langmuir.2c03334 Self-Assembly-Driven Bi2S3 Nanobelts Integrated a Silk-Fibroin-Based 3D-Printed Aerogel-Based Scaffold with a Dual-Network Structure for Photothermal Bone Cancer Therapy] by a team from the [https://chemie.uni-koeln.de/en/research/institute-of-inorganic-chemistry Institute of Inorganic Chemistry, University of Cologne], the [https://www.polimi.it/en/scientific-research/research-at-the-politecnico/departments/department-of-chemistry-materials-and-chemical-engineering-giulio-natta Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano], and the [https://www.cmmc-uni-koeln.de/home Center for Molecular Medicine Cologne (CMMC)]
 
* [https://www.pnas.org/doi/abs/10.1073/pnas.2220032120 3D Printing of Responsive Chiral Photonic Nanostructures] by a team from [https://www.cornell.edu/ Cornell University]'s [https://cals.cornell.edu/food-science Department of Food Science] and [https://sc.edu/ University of South Carolina]'s Departments of [https://sc.edu/study/colleges_schools/engineering_and_computing/departments/biomedical_engineering/index.php Biomedical] and [https://sc.edu/study/colleges_schools/engineering_and_computing/departments/chemical_engineering/index.php Chemical] Engineering  
 
* [https://www.pnas.org/doi/abs/10.1073/pnas.2220032120 3D Printing of Responsive Chiral Photonic Nanostructures] by a team from [https://www.cornell.edu/ Cornell University]'s [https://cals.cornell.edu/food-science Department of Food Science] and [https://sc.edu/ University of South Carolina]'s Departments of [https://sc.edu/study/colleges_schools/engineering_and_computing/departments/biomedical_engineering/index.php Biomedical] and [https://sc.edu/study/colleges_schools/engineering_and_computing/departments/chemical_engineering/index.php Chemical] Engineering  
 
* [https://onlinelibrary.wiley.com/doi/full/10.1002/admt.202201677 3D Printed Dry Electrodes for Electrophysiological Signal Monitoring: A Review] by a team from [https://www.kaust.edu.sa/en King Abdullah University of Science and Technology (KAUST)]
 
* [https://onlinelibrary.wiley.com/doi/full/10.1002/admt.202201677 3D Printed Dry Electrodes for Electrophysiological Signal Monitoring: A Review] by a team from [https://www.kaust.edu.sa/en King Abdullah University of Science and Technology (KAUST)]
Line 110: Line 114:
 
==== Published in 2023 ====
 
==== Published in 2023 ====
  
 +
* [https://www.sciencedirect.com/science/article/abs/pii/S0272884223014670 Texture in Silicon Carbide via Aqueous Suspension Material Extrusion and Seeded Grain Growth] by a team from [https://www.purdue.edu/ Purdue University]
 +
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/aisy.202200332 Shape Memory Soft Robotics with Yield Stress Fluids] by a team from the [https://www.uva.nl/en University of Amsterdam] and the [https://www.tue.nl/en/ Eindhoven University of Technology (TU Eindhoven)]
 +
* [https://pubs.acs.org/doi/full/10.1021/acsami.2c23028 Multimaterial Printing of Liquid Crystal Elastomers with Integrated Stretchable Electronics] by a team from the [https://www.meche.engineering.cmu.edu/ Department of Mechanical Engineering] and the [https://www.hcii.cmu.edu/ Human Computer Interaction Institute] of [https://www.cmu.edu/ Carnegie Mellon University], and from the [https://www.isr.uc.pt/ Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra]
 +
* [https://www.mdpi.com/2079-4983/14/5/251 Robocasting of Ceramic Fischer–Koch S Scaffolds for Bone Tissue Engineering] by a team from the [https://www.engr.colostate.edu/me/ Department of Mechanical Engineering], the [https://compsci.colostate.edu/ Department of Computer Science], the [https://www.engr.colostate.edu/sbme/ School of Biomedical Engineering] and the [https://mathematics.colostate.edu/ Department of Mathematics] of [https://www.colostate.edu/ Colorado State University]
 +
* [https://www.sciencedirect.com/science/article/abs/pii/S0014305723002884 In Vitro Electrically Controlled Amoxicillin Release from 3D-Printed Chitosan/Bismuth Ferrite Scaffolds] by a team from the [https://bioeng.yildiz.edu.tr/page/DEPARTMENT/About/78 Department of Bioengineering, Faculty of Chemistry and Metallurgy, Yildiz Technical University], the [https://biomatter.ulb.be/ BioMatter unit - École polytechnique de Bruxelles, Université Libre de Bruxelles], the [http://iso.xynu.edu.cn/en/pages?cid=1&pid=1&pages_id=76 College of Life Sciences, Xinyang Normal University (XYNU)], and the [https://nbuam.marmara.edu.tr/en Center for Nanotechnology and Biomaterials Application & Research (NBUAM)], [https://mte.eng.ua.edu/ Department of Metallurgical and Materials Engineering], and [https://eczacilik.marmara.edu.tr/en/departments/basic-pharmaceutical-sciences/department-of-pharmaceutical-basic-sciences, Faculty of Pharmacy] of [https://www.marmara.edu.tr/en Marmara University]
 +
* [https://www.sciencedirect.com/science/article/pii/S0023643823003766 Evaluation of Physicochemical Properties of Starch-Protein Gels: Printability and Ppostprocessing] by a team from [https://www.ubiobio.cl/w/ Universidad del Bío-Bío] and [https://www.uchile.cl/ Universidad de Chile]
 +
* [https://dl.acm.org/doi/pdf/10.1145/3544548.3580638 EpoMemory: Multi-state Shape Memory for Programmable Morphing Interfaces] by a team from different departments of [https://www.cmu.edu/ Carnegie Mellon University]
 +
* [https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12484/124840B/Additive-manufacturing-of-highly-flexible-impact-wave-propagation-sensor/10.1117/12.2664163.short Additive Manufacturing of Highly Flexible Impact Wave Propagation Sensor] by a team from [https://www.lanl.gov/ Los Alamos National Laboratory] and [https://www.utep.edu/ The University of Texas at El Paso]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acsami.3c00389 3D Bioprintable Hypoxia-Mimicking PEG-Based Nano Bioink for Cartilage Tissue Engineering] by a team from the [https://iith.ac.in/ Indian Institute of Technology (IIT) Hyderabad,]'s  [https://people.iith.ac.in/subharath/index.html Regenerative Medicine and Stem cell (RMS) Lab, Department of Biomedical Engineering] and [https://msme.iith.ac.in/ Department of Materials Science and Metallurgical Engineering], as well as the Sri Manjeera Super Specialty Hospital, Department of Obstetrics and Gynecology, Sangareddy
 +
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/aisy.202200402 Electrically Controlled Liquid Crystal Elastomer Surfaces forDynamic Wrinkling] by a team from [https://www.cmu.edu/ Carnegie Mellon University]'s [https://www.meche.engineering.cmu.edu/ Department of Mechanical Engineering] and [https://www.hcii.cmu.edu/ Human-Computer Interaction Institute] and the [https://www.umass.edu/engineering/academics/departments/mechanical-and-industrial-engineering Mechanical and Industrial Engineering Department, University of Massachusetts]
 +
* [http://200.9.65.36/index.php/JBTH/article/download/286/224 A Literature Review of Additive Manufacturing in the Fabrication of Soft Robots: Main Techniques, Applications, and Related Industrial-Sized Machines] by a team from [https://www.senaicimatec.com.br/en/sobre/ SENAI CIMATEC University Center, Brazil]
 +
* [https://www.mdpi.com/2072-666X/14/4/762 Development and Optimization of 3D-Printed Flexible Electronic Coatings: A New Generation of Smart Heating Fabrics for Automobile Applications] by a team from the [https://www.insa-lyon.fr/en/insa-lyon Electrical Department, Ladoua Campus, University Lyon, INSA-Lyon] and [https://www.tescagroup.com/en/ TESCA-Group]
 +
* [https://www.sciencedirect.com/science/article/pii/S2214785323016115 2D Stationary Computational Printing of Cement-based Pastes with Time-Dependent Rheology] by a team from the [https://www.tntech.edu/engineering/programs/che/ Department of Chemical Engineering, Tennessee Technical University]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acsabm.2c01075 3D Printing of a Biocompatible Nanoink Derived from Waste Animal Bones] by a team from various departments of the [https://www.iitkgp.ac.in/ Kharagpur], [https://iitgn.ac.in/ Gandhinagar], and [https://www.iitbhu.ac.in/ Varanasi (BHU)] campuses of the [https://www.iitsystem.ac.in/ Indian Institutes of Technology]
 
* [https://www.sciencedirect.com/science/article/pii/S2214785323009240 Assessing the Robustness of Cement-Hydrogel-Based Binders as 3D Printing Materials] by a team from [https://www.tntech.edu/engineering/programs/che/index.php Department of Chemical Engineering, Tennessee Tech University]
 
* [https://www.sciencedirect.com/science/article/pii/S2214785323009240 Assessing the Robustness of Cement-Hydrogel-Based Binders as 3D Printing Materials] by a team from [https://www.tntech.edu/engineering/programs/che/index.php Department of Chemical Engineering, Tennessee Tech University]
 
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.202201421 3D Printable Hydrogel with Tunable Degradability and Mechanical Properties as a Tissue Scaffold for Pelvic Organ Prolapse Treatment] by a team from [https://www.asu.edu/ Arizona State University]'s [https://poly.engineering.asu.edu/ The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering], [https://sbhse.engineering.asu.edu/faculty/ Department of Biomedical Engineering, School of Biological and Health Systems Engineering (SBHSE)], and[https://msn.engineering.asu.edu/ The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering]; from [https://www.mayoclinic.org/patient-visitor-guide/arizona The Mayo Clinic]'s Arizona departments of [https://www.mayo.edu/research/departments-divisions/department-immunology/overview Department of Immunology], [https://www.mayo.edu/research/labs/head-and-neck-regenerative-medicine/overview Head and Neck Regenerative Medicine Laboratory], [https://www.mayoclinic.org/departments-centers/obstetrics-gynecology/sections/overview/ovc-20423739 Department of Medical and Surgical Gynecology], and [https://www.mayoclinic.org/departments-centers/ent-head-neck-surgery/sections/overview/ovc-20424084 Division of Laryngology, Department of Otolaryngology]; and the [https://gondabrain.biu.ac.il/en/node/1 Faculty of Engineering, Institute of Nanotechnology, Gonda Brain Research Center, Bar-Ilan University]
 
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.202201421 3D Printable Hydrogel with Tunable Degradability and Mechanical Properties as a Tissue Scaffold for Pelvic Organ Prolapse Treatment] by a team from [https://www.asu.edu/ Arizona State University]'s [https://poly.engineering.asu.edu/ The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering], [https://sbhse.engineering.asu.edu/faculty/ Department of Biomedical Engineering, School of Biological and Health Systems Engineering (SBHSE)], and[https://msn.engineering.asu.edu/ The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering]; from [https://www.mayoclinic.org/patient-visitor-guide/arizona The Mayo Clinic]'s Arizona departments of [https://www.mayo.edu/research/departments-divisions/department-immunology/overview Department of Immunology], [https://www.mayo.edu/research/labs/head-and-neck-regenerative-medicine/overview Head and Neck Regenerative Medicine Laboratory], [https://www.mayoclinic.org/departments-centers/obstetrics-gynecology/sections/overview/ovc-20423739 Department of Medical and Surgical Gynecology], and [https://www.mayoclinic.org/departments-centers/ent-head-neck-surgery/sections/overview/ovc-20424084 Division of Laryngology, Department of Otolaryngology]; and the [https://gondabrain.biu.ac.il/en/node/1 Faculty of Engineering, Institute of Nanotechnology, Gonda Brain Research Center, Bar-Ilan University]
Line 117: Line 135:
 
* [https://www.sciencedirect.com/science/article/abs/pii/S0955221923001577 3D Printing of Doped Barium-titanate Using Robocasting - Toward New Generation Lead-free Piezoceramic Transducers] by a team from the [https://www.insa-lyon.fr/en/ INSA-Lyon] and [https://www.thalesgroup.com/en/global/innovation/research-and-technology Thales Research & Technology]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S0955221923001577 3D Printing of Doped Barium-titanate Using Robocasting - Toward New Generation Lead-free Piezoceramic Transducers] by a team from the [https://www.insa-lyon.fr/en/ INSA-Lyon] and [https://www.thalesgroup.com/en/global/innovation/research-and-technology Thales Research & Technology]
 
* [https://iopscience.iop.org/article/10.1149/2754-2726/acbe0c/pdf Comparison of Machine Learning Algorithms for Natural Gas Identification with Mixed Potential Electrochemical Sensor Arrays] by a team from the [https://physics.yale.edu/ Department of Physics, Yale University] and the [https://cmem.unm.edu/ Center for MicroEngineered Materials, University of New Mexico]
 
* [https://iopscience.iop.org/article/10.1149/2754-2726/acbe0c/pdf Comparison of Machine Learning Algorithms for Natural Gas Identification with Mixed Potential Electrochemical Sensor Arrays] by a team from the [https://physics.yale.edu/ Department of Physics, Yale University] and the [https://cmem.unm.edu/ Center for MicroEngineered Materials, University of New Mexico]
* [https://www.sciencedirect.com/science/article/pii/S0272884223003978 Effect of Particle Size on AdditiveManufacturing of Complex Architecture of Silicon Carbide] by a team from the [https://www.iitsystem.ac.in/ Indian Institute of Technology]'s [http://www.iitkgp.ac.in/ Kharagpur], [https://www.iitbhu.ac.in/ (BHU) Varanasi], and [https://iitgn.ac.in/ Gandhinagar] campuses, and well as the [https://www.vssc.gov.in/ Vikram Sarabhai Space Centre]
+
* [https://www.sciencedirect.com/science/article/pii/S0272884223003978 Effect of Particle Size on Additive Manufacturing of Complex Architecture of Silicon Carbide] by a team from the [https://www.iitsystem.ac.in/ Indian Institute of Technology]'s [http://www.iitkgp.ac.in/ Kharagpur], [https://www.iitbhu.ac.in/ (BHU) Varanasi], and [https://iitgn.ac.in/ Gandhinagar] campuses, and well as the [https://www.vssc.gov.in/ Vikram Sarabhai Space Centre]
 
* [https://scholarworks.utep.edu/cgi/viewcontent.cgi?article=4669&context=open_etd Direct Ink Write And Thermomechanical Characterization Of Thermoset Composites], a Master's thesis submitted to the [https://www.utep.edu/programs/undergraduate/mechanical-engineering.html Department of Mechanical Engineering, University of Texas at El Paso]
 
* [https://scholarworks.utep.edu/cgi/viewcontent.cgi?article=4669&context=open_etd Direct Ink Write And Thermomechanical Characterization Of Thermoset Composites], a Master's thesis submitted to the [https://www.utep.edu/programs/undergraduate/mechanical-engineering.html Department of Mechanical Engineering, University of Texas at El Paso]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S2214860423000386 Material Extrusion of Highly-Loaded Silicon Nitride Aqueous Inks for Solid Infilled Structures] by a team from [https://www.afrl.af.mil/RX/ Materials and Manufacturing Directorate, Air Force Research Laboratory], [https://sites.nationalacademies.org/PGA/RAP/index.htm National Research Council Research Associate Program], [https://www.ues.com/ UES, Inc.], [https://www.soche.org/ Strategic Ohio Council for Higher Education], and [https://www.ge.com/research/ General Electric Research]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S2214860423000386 Material Extrusion of Highly-Loaded Silicon Nitride Aqueous Inks for Solid Infilled Structures] by a team from [https://www.afrl.af.mil/RX/ Materials and Manufacturing Directorate, Air Force Research Laboratory], [https://sites.nationalacademies.org/PGA/RAP/index.htm National Research Council Research Associate Program], [https://www.ues.com/ UES, Inc.], [https://www.soche.org/ Strategic Ohio Council for Higher Education], and [https://www.ge.com/research/ General Electric Research]
Line 372: Line 390:
 
==== Published in 2023 ====
 
==== Published in 2023 ====
  
 +
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/admt.202300144 Toward Fully Printed Soft Actuators: UV-Assisted Printing of Liquid Crystal Elastomers and Biphasic Liquid Metal Conductors] by a team from the [https://www.uc.pt/en/fctuc/deec/Department Institute of Systems and Robotics Department of Electrical and Computer Engineering University of Coimbra]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S0266353823000489#preview-section-snippets Controlled Directionality in 3D Printing of Graphite-Reinforced Polymer Composite with Enhanced Mechanical Properties] by a team from the [https://www.iitsystem.ac.in/ Indian Institute of Technology]'s [http://www.iitkgp.ac.in/ Kharagpur] and [https://iitgn.ac.in/ Gandhinagar] campuses, and the [https://www.innovationpark.psu.edu/park-news/latest-news/569-join-us-for-the-carbon-science-centre-of-excellence Carbon Science Centre of Excellence, Morgan Advanced Materials, Penn State University]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S0266353823000489#preview-section-snippets Controlled Directionality in 3D Printing of Graphite-Reinforced Polymer Composite with Enhanced Mechanical Properties] by a team from the [https://www.iitsystem.ac.in/ Indian Institute of Technology]'s [http://www.iitkgp.ac.in/ Kharagpur] and [https://iitgn.ac.in/ Gandhinagar] campuses, and the [https://www.innovationpark.psu.edu/park-news/latest-news/569-join-us-for-the-carbon-science-centre-of-excellence Carbon Science Centre of Excellence, Morgan Advanced Materials, Penn State University]
 
* [https://pubs.acs.org/doi/abs/10.1021/acs.langmuir.2c02936 3D Printed Hierarchical Porous Poly(ε-caprolactone) Scaffolds from Pickering High Internal Phase Emulsion Templating] by a team from the [https://textile.iitd.ac.in/ Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi]
 
* [https://pubs.acs.org/doi/abs/10.1021/acs.langmuir.2c02936 3D Printed Hierarchical Porous Poly(ε-caprolactone) Scaffolds from Pickering High Internal Phase Emulsion Templating] by a team from the [https://textile.iitd.ac.in/ Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi]
Line 452: Line 471:
 
==== Published in 2023 ====
 
==== Published in 2023 ====
  
 +
* [https://link.springer.com/article/10.1007/s10845-023-02141-0 Process Parameter Optimization for Reproducible Fabrication of Layer Porosity Quality of 3D-Printed Tissue Scaffold] by a team from several departments at [https://www.vt.edu/ Virginia Tech]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acsami.3c01307 Fundamentals of Crystalline Evolution and Properties of Carbon Nanotube-Reinforced Polyether Ether Ketone Nanocomposites in Fused Filament Fabrication] by a team from several departments at [https://www.tamu.edu Texas A&M University]
 +
* [https://www.osti.gov/servlets/purl/1960414 Printed Planar Microwave Connector with Multiple Signal Lines] by a team from [https://www.uml.edu/engineering/electrical-computer/ Electrical & Computer Engineering, University of Massachusetts, Lowell]
 +
* [https://www.researchgate.net/profile/Aljawharah-Alsharif/publication/364062631_Structured_3D_Printed_Dry_ECG_Electrodes_Using_Copper_Based_Filament/links/640f739166f8522c38a04270/Structured-3D-Printed-Dry-ECG-Electrodes-Using-Copper-Based-Filament.pdf Structured 3D Printed Dry ECG Electrodes Using Copper Based Filament] by a team from the [https://cemse.kaust.edu.sa/org/cemse Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)]
 
* [https://onlinelibrary.wiley.com/doi/full/10.1002/admt.202201677 3D Printed Dry Electrodes for Electrophysiological Signal Monitoring: A Review] by a team from [https://www.kaust.edu.sa/en King Abdullah University of Science and Technology (KAUST)]
 
* [https://onlinelibrary.wiley.com/doi/full/10.1002/admt.202201677 3D Printed Dry Electrodes for Electrophysiological Signal Monitoring: A Review] by a team from [https://www.kaust.edu.sa/en King Abdullah University of Science and Technology (KAUST)]
  

Revision as of 13:39, 30 May 2023

Below is a list of published works citing Hyrel equipment.

Count

425 documents as of 30 May, 2023.

Non-Traditional Manufacturing

Including Antennas, Sensors, Inductors, and Circuits; Combined Manufacturing Techniques; Electro-Spinning or Electro-Melt-Spinning or Melt Electro-Writing (MEW); 4D Printing and Shape Memory Polymers; Nanostructures; also printing with Embedded Fibers and combining FDM with DIW or MEW.

Published in 2023

Published in 2022

Published in 2021

Published in 2020

Published in 2019

Published in 2018

Published in 2017

Published in 2016

Published in 2015

Unheated or Chilled Reservoir Printing (DIW)

Also known as Robocasting or DIW (Direct Ink Writing).

Published in 2023

Published in 2022

Published in 2021

Published in 2020

Published in 2019

Published in 2018

Published in 2017

Published in 2016

Published in 2015

Published in 2014

Heated Reservoir Printing (DPE, HME)

Also known as DPE (Direct Powder Extrusion) or HME (Hot Melt Extrusion).

Published in 2023

Published in 2022

Published in 2021

Published in 2020

Published in 2019

Published in 2018

Published in 2017

Filament Printing (HME, FFF, FDM)

Also known as HME (Hot Melt Extrusion), FFF (Fused Filament Fabrication), or FDM (Fused Deposition Modeling).

Published in 2023

Published in 2022

Published in 2021

Published in 2020

Published in 2019

Published in 2018

Published in 2017

Published in 2016