Difference between revisions of "Published Papers"

From Hyrel3D
Jump to: navigation, search
(DIW/SEP/SSE, 2019)
(DIW/SEP/SSE, 2018)
Line 200: Line 200:
  
 
These pages ran too long, and have been split off to the new '''[[Published_Papers_(DIW)|Published Papers (DIW)]]''' page.
 
These pages ran too long, and have been split off to the new '''[[Published_Papers_(DIW)|Published Papers (DIW)]]''' page.
 
== DIW/SEP/SSE, 2018 ==
 
 
*[https://www.sciencedirect.com/science/article/pii/S2214289418300504 Nano Silica-Carbon-Silver Ternary Hybrid Induced Antimicrobial Composite Films for Food Packaging Application] by a team from the [https://www.tuskegee.edu/programs-courses/colleges-schools/coe/materials-science-and-engineering-home Materials Science & Enginnernig Department of Tuskegee University]
 
*[http://sffsymposium.engr.utexas.edu/sites/default/files/2018/078%20AdditiveManufacturingofAluminaComponentsbyEx.pdf Additive Manufacturing of Alumina Components by Extrusion of in-situ UV-Cured Pastes] by a team from [https://www.sandia.gov Sandia National Laboratory] and [http://cmem.unm.edu/ The University of New Mexico's Center for MicroEngineered Materials]
 
*[https://onlinelibrary.wiley.com/doi/pdf/10.1002/adhm.201801353 Hydrocolloid Architectural Design of 3D Printed Scaffolds Controls the Volume and Functionality of Newly Formed Bone] by a team from the [https://sydney.edu.au/engineering/about/school-of-aerospace-mechanical-and-mechatronic-engineering.html/ School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney] and the [http://www.chemistry.unsw.edu.au/ School of Chemistry, University of New South Wales, Sydney]
 
*[https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.201800343 Hydrocolloid Inks for 3D Printing of Porous Hydrogels] by a team with members from [https://engineering.tamu.edu/biomedical/index.html The Department of Biomedical Engineering, Texas A&M University], [https://www.bme.utexas.edu/ The Department of Biomedical Engineering, University of Texas at Austin], and [https://chme.nmsu.edu/ The Department of Chemical and Materials Engineering, New Mexico State University]
 
*[https://www.sciencedirect.com/science/article/pii/S0142961218306641 Improved In Situ Seeding of 3D Printed Scaffolds using Cell-Releasing Hydrogels] by a team with members from [https://engineering.tamu.edu/biomedical/index.html The Department of Biomedical Engineering, Texas A&M University], [https://www.bme.utexas.edu/ The Department of Biomedical Engineering, University of Texas at Austin], and [https://bioengineering.rice.edu/ The Department of Bioengineering, Rice University].
 
* [https://opencommons.uconn.edu/cgi/viewcontent.cgi?article=1601&context=srhonors_theses Effect of Silk-Based Hydrogel Topography on Intestinal Epithelial Cell Morphology and Wound Healing In Vitro] a thesis by Marisa E. Boch from the [https://cbe.engr.uconn.edu Department of Chemical and Biomolecular Engineering] at the [http://uconn.ecu University of Connecticut]
 
*[https://www.researchgate.net/profile/Homa_Maleki2/publication/325559793_Compressible_thermally_insulating_and_fire_retardant_aerogels_through_self-assembling_the_silk_fibroin_biopolymer_inside_the_silica_structure_-_An_approach_towards_3D_printing_of_aerogels/links/5b2ca6930f7e9b0df5ba7281/Compressible-thermally-insulating-and-fire-retardant-aerogels-through-self-assembling-the-silk-fibroin-biopolymer-inside-the-silica-structure-An-approach-towards-3D-printing-of-aerogels.pdf Compressible, Thermally Insulating, and Fire Retardant Aerogels through Self-Assembling Silk Fibroin Biopolymers Inside a Silica Structure - An Approach towards 3D Printing of Aerogels] by a team from the [https://www.uni-salzburg.at/index.php?id=210387&L=1 Chemistry and Physics of Materials Department] of [https://www.uni-salzburg.at/index.php?id=52&L=1 The University of Salzburg] and [https://www.chemie.uni-koeln.de/forschung_ac.html?&L=1 School of Inorganic Chemistry] at [http://www.portal.uni-koeln.de/9441.html?L=1 The University of Cologne].
 
* [https://www.nature.com/articles/s41467-018-04800-w.pdf Covalent-Supramolecular Hybrid Polymers as Muscle-Inspired Anisotropic Actuators] by an interdisciplinary team from [https://www.northwestern.edu Northwestern University]. ''The 3D printing experiments were supported by the '''[http://www.wpafb.af.mil/afrl.aspx Air Force Research Laboratory]''' under agreement number FA8650-15-2-5518''
 
*[http://pubs.rsc.org/en/content/articlelanding/2018/mh/c8mh00296g#!divAbstract Fully 2D and 3D Printed Anisotropic Mechanoluminescent Objects and their Application for Energy Harvesting in the Dark] by [https://scholars.huji.ac.il/magdassi/home Prof. Shlomo Magdassi's] group at [http://new.huji.ac.il/en The Hebrew University of Jerusalem].
 
* [http://www.pnas.org/content/early/2018/05/11/1800298115.short Additive-free Carbon Nanotube Dispersions, Pastes, Gels, and Doughs in Cresols] by a team from [https://www.northwestern.edu/ Northwestern University]
 
* [https://onlinelibrary.wiley.com/doi/full/10.1002/admt.201800060 3D Printing of Hierarchical Porous Silica and α‐Quartz] by a team from [https://www.uni-salzburg.at/index.php?id=52&L=1 The University of Salzburg]
 
* [http://www.freepatentsonline.com/y2018/0065310.html Polymeric Materials and Articles Manufactured There From] by a team from [https://us.pg.com/ Procter and Gamble]
 
* [https://ieeexplore.ieee.org/abstract/document/8329484/?reload=true UV-curable Ferrite Paste for Additive Manufacturing of Power Magnetics] by a team from [http://vt.edu Virginia Tech]
 
* [https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.8b00580 Tailoring the Porosity and Microstructure of Printed Graphene Electrodes via Polymer Phase Inversion] by a team from [http://northwestern.edu Northwestern University]
 
 
[[#top|Top]]
 
  
 
== DIW/SEP/SSE, 2017 ==
 
== DIW/SEP/SSE, 2017 ==

Revision as of 14:28, 27 August 2025

Below is a list of published works citing Hyrel equipment.

Count

661 documents as of 27 August, 2025.

Non-Traditional Manufacturing

Including:

  • 4D Printing
  • Antennas, Sensors, Batteries, Inductors, and Circuits
  • Electro-Spinning
  • Electro-Melt-Spinning
  • Engineered Living Materials (ELM)
  • Melt Electro-Writing (MEW)
  • Multiphase Direct Ink Writing (MDIW)
  • Nanostructures
  • Micro-Encapsulated Phase-Changing Materials (MEPCM)
  • Plasma Treatments
  • Printing with Embedded Fibers
  • Shape Memory Polymers
  • And combining two or more additive manufacturing methods in a single build.

NTM, 2025

Top

NTM, 2024

Top

NTM, 2023

Top

NTM, 2022

Top

NTM, 2021

Top

NTM, 2020

Top

NTM, 2019

Top

NTM, 2018

Top

NTM, 2017

Top

NTM, 2016

Top

NTM, 2015

Top

Unheated or Chilled Reservoir Printing

Also known as Robocasting or DIW (Direct Ink Writing), SEP (Semisolid Extrusion Printing), SSE (Semisolid Extrusion). 3DCP (3D Concrete Printing), or DCC (Digital Concrete Construction).

These pages ran too long, and have been split off to the new Published Papers (DIW) page.

DIW/SEP/SSE, 2017

Top

DIW/SEP/SSE, 2016

Top

DIW/SEP/SSE, 2015

Top

DIW/SEP/SSE, 2014

Top

Heated Reservoir Printing

Also known as DPE (Direct Powder Extrusion) or HME (Hot Melt Extrusion).

DPE, HME 2025

Top

DPE, HME 2024

Top

DPE, HME 2023

Top

DPE, HME 2022

Top

DPE, HME 2021

Top

DPE, HME 2020

Top

DPE, HME 2019

Top

DPE, HME 2018

Top

DPE, HME 2017

Top

Filament Printing

Also known as FFF (Fused Filament Fabrication) or FDM (Fused Deposition Modeling).

FDM/FFF, 2025

Top

FDM/FFF, 2024

Top

FDM/FFF, 2023

Top

FDM/FFF, 2022

Top

FDM/FFF, 2021

Top

FDM/FFF, 2020

Top

FDM/FFF, 2019

Top

FDM/FFF, 2018

Top

FDM/FFF, 2017

Top

FDM/FFF, 2016

Top