Difference between revisions of "Published Papers"

From Hyrel3D
Jump to: navigation, search
(Published in 2020)
(Count)
 
Line 5: Line 5:
 
Below is a list of published works citing Hyrel equipment.  
 
Below is a list of published works citing Hyrel equipment.  
  
211 documents as of 14 December 2020.
+
<span style="color: red;">The pages about '''Unheated or Chilled Reservoir Printing''', also known as '''Robocasting''' or '''DIW''' (Direct Ink Writing), '''SEP''' (Semisolid Extrusion Printing), '''SSE''' (Semisolid Extrusion). '''3DCP''' (3D Concrete Printing), or '''DCC''' (Digital Concrete Construction), ran too long, and have been split off to the new '''[[Published_Papers_(DIW)|Published Papers (DIW)]]''' page.</span>
  
== Non-Traditional Manufacturing ==
+
== Count ==
  
Including Antennas, Sensors, Inductors, and Circuits; Combined Manufacturing Techniques; and Electro-Spinning or Electro-Melt-Spinning
+
665 total documents as of 10 September, 2025.
  
==== Published in 2020 ====
+
== '''Non-Traditional Manufacturing''' ==
  
 +
Including:
 +
* 4D Printing
 +
* Antennas, Sensors, Batteries, Inductors, and Circuits
 +
* Electro-Spinning
 +
* Electro-Melt-Spinning
 +
* Engineered Living Materials (ELM)
 +
* Melt Electro-Writing (MEW)
 +
* Multiphase Direct Ink Writing (MDIW)
 +
* Nanostructures
 +
* Micro-Encapsulated Phase-Changing Materials (MEPCM)
 +
* Plasma Treatments
 +
* Printing with Embedded Fibers
 +
* Shape Memory Polymers
 +
* And combining two or more additive manufacturing methods in a single build.
 +
 +
== NTM, 2025 ==
 +
 +
* [https://commons.erau.edu/cgi/viewcontent.cgi?article=1956&context=edt Embeddable Multi-Material Wireless Micro-Sensors Utilizing Additive Manufacturing and Enhanced Microstructure] a thesis submitted to [https://daytonabeach.erau.edu/college-engineering/aerospace Aerospace Engineering program at Embry-Riddle Aeronautical University]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acsanm.5c02542 Surface Air Plasma Treatment of Laser-Induced Graphene-Based Electrodes for Enhanced Electrochemical Sensing Performance] by a team from [https://lassonde.yorku.ca/ Lassonde School of Engineering, York University, Toronto]
 +
* [https://utoronto.scholaris.ca/server/api/core/bitstreams/f7cf9774-b506-4992-af1c-4c0b100e6af2/content Mechanics and odeling of 3D Printed Metamaterials for Energy Absorption], a thesis paper submitted to the [https://www.mie.utoronto.ca/ Mechanical and Industrial Engineering Department, University of Toronto]
 +
* [https://www.sciencedirect.com/science/article/abs/pii/S0254058425008272 Advancing 3D-printed Hierarchical Porous Copper Electrodes: Enhancing Performance Through Post-sintering Parameters Optimization] by a team from the [https://iitbhu.ac.in/dept/mec Department of Mechanical Engineering Indian Institute of Technology Banaras Hindu University Varanasi]
 +
* [https://www.sciencedirect.com/science/article/abs/pii/S1385894725059443 Nb0.8Ti0.2FeSb via Ink Extrusion and Reaction-sintering of Elemental Powders for Half-heusler Thermoelectric Couples] by a team from [https://www.mccormick.northwestern.edu/materials-science/ Materials Science & Engineering, Northwestern University]
 +
* [https://www.sciencedirect.com/science/article/abs/pii/S2352152X25017402 Advanced Lithium Metal Battery: Enhancing Electrochemical Performance With 3D-printed Hierarchically Porous Copper Collectors] by a team from the [https://www.iitbhu.ac.in/dept/mec Department of Mechanical Engineering, Indian Institute of Technology, Banaras Hindu University]
 +
* [https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4815534 Topological Optimization of Flexible Supercapacitor Electrodes through Modelling and Direct Ink 3D-Writing] by a team from [http://www.metal.iitkgp.ac.in Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur]
 +
* [https://pubs.acs.org/doi/10.1021/acsami.4c18528 Biomimetic 3D Prototyping of Hierarchically Porous Multilayered Membranes for Enhanced Oil–Water Filtration] by a team from [https://semte.engineering.asu.edu/ Materials Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Ira A. Fulton Schools of Engineering, Arizona State University], [https://www.qu.edu.qa/en-us/research/cam/ Center for Advanced Materials, Qatar University], [https://engineering.uga.edu/ Mechanical Engineering, College of Engineering, University of Georgia], and [https://me.berkeley.edu/ Department of Mechanical Engineering, University of California, Berkeley]
 +
* [https://www.biorxiv.org/content/10.1101/2025.01.21.634218v1.full.pdf De novo Autogenic Engineered Living Functional Materials] by a team from [https://www.bse.vt.edu/ Department of Biological Systems Engineering, Virginia Tech] and [https://cos.northeastern.edu/chemistry-chemical-biology/ Department of Chemistry and Chemical Biology, Northeastern University, Boston]
 +
* [https://escholarship.org/uc/item/3jk4s482 Thermal Characterization of Novel Electrodes and Modeling of Novel Characterization Methods for Electrochemical Energy Storage Systems], a PhD thesis submitted to [https://grad.ucla.edu/programs/school-of-engineering-and-applied-science/mechanical-aerospace-engineering-department/ Mechanical & Aerospace Engineering Department of UCLA]
 +
* [https://www.nature.com/articles/s41467-025-56140-1 Time Code for Multifunctional 3D Printhead Controls] by a team from the [https://engineering.jhu.edu/case/ Department of Civil and Systems Engineering, Johns Hopkins University]
 +
* [https://hyrel3d.com/wiki/index.php/Tranining_%26_Support RF Sensitive Sensors, Circuits, and Interconnects Using Additive Materials and Techniques] by a team from [https://www.uml.edu/engineering/electrical-computer/ Department of Electrical Engineering, University of Massachusetts Lowel] and [https://sc.devcom.army.mil/ U.S. Army DEVCOM Soldier Center]
 +
 +
[[#top|Top]]
 +
 +
== NTM, 2024 ==
 +
 +
* [https://www.sciencedirect.com/science/article/pii/S0196890424010471?via%3Dihub Microencapsulated Phase Change Material in 3D-printable Mortars] by a team from [https://www.dtu.dk/english/ Technical University of Denmark] and [https://www.utwente.nl/en/ University of Twente]
 +
* [https://www.sciencedirect.com/science/article/pii/S2214860424005566 Development and Characterisation of 3D-Printed Multi-Material Thermistor] by a team from the [https://www.lboro.ac.uk/schools/design-creative-arts/ School of Design and Creative Arts, Loughborough University]
 +
* [https://commons.erau.edu/cgi/viewcontent.cgi?article=1863&context=edt Additively Manufactured Flexible Piezoelectric Wave-Based Multifunctional SensorMultifunctional Sensor], a Master's Thesis submitted to [https://erau.edu/ Embry-Riddle Aeronautical University]
 +
* [https://www.mdpi.com/2673-3978/5/3/11 Inkjet Printing of a Gate Insulator: Towards Fully Printable Organic Field Effect Transistor] by a team from the [https://polytechnic.purdue.edu/schools/engineering-technology School of Engineering Technology, Purdue University]
 +
* [https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202409093 Extremely Stable, Multidirectional, All-in-One Piezoelectric Bending Sensor with Cycle up to Million Level] by a team from several departments of [http://en.xjtu.edu.cn/ Xi'an Jiaotong University, China]
 +
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202406341 Hybrid 3D Printing of a Nature-Inspired Flexible Self-Adhesive Biopatch for Multi-Biosignal Sensing] by a team from [https://www.kaust.edu.sa King Abdullah University of Science and Technology (KAUST)]'s [https://cemse.kaust.edu.sa/sama Smart Advanced Memory devices and Applications (SAMA) Lab], [https://energizingcomposites.kaust.edu.sa/cohmas Mechanics of Composites for Energy and Mobility Lab], and [https://bese.kaust.edu.sa/ Biological and Environmental Science and Engineering Division]
 +
* [https://trace.tennessee.edu/cgi/viewcontent.cgi?article=10200&context=utk_graddiss Engineering of Functional Hybrid Nanocomposites for Renewable Energy Applications via Laser Ablation], a doctoral dissertation submitted to [https://cbe.utk.edu/ The University of Tennessee, Knoxville's Department of Chemical and Biomolecular Engineering ]
 +
* [https://www.science.org/doi/pdf/10.1126/sciadv.adn7772 Multiscale 3d Printing via Active Nozzle Size and Shape Control] by a team from the [https://engineering.jhu.edu/case/ Department of civil and Systems engineering, Johns Hopkins University]
 +
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/smll.202402432 Versatile Patterning of Liquid Metal via Multiphase 3D Printing] by a team from the [https://msn.engineering.asu.edu/ School of Manufacturing Systems and Networks (MSN), Ira Fulton Schools of Engineering, Arizona State University]
 +
* [https://www.nature.com/articles/s41467-024-48353-7 Advancing Interactive Systems With Liquid Crystal Network-based Adaptive Electronics] by a team from [https://www.tue.nl/en/ Eindhoven University of Technology, The Netherlands]
 +
* [https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12951/1295123/All-printed-multifunctional-sensors-for-structural-health-monitoring-of-inflatable/10.1117/12.3009977.short#_=_ All-printed Multifunctional Sensors for Structural Health Monitoring of Inflatable Habitats] by a team from [https://www.boisestate.edu/ Boise State University]
 +
* [https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12946/129461O/In-space-manufacturing-of-morphing-electronics/10.1117/12.3009988.short#_=_ In-space Manufacturing of Morphing Electronics ] by a team from [https://www.boisestate.edu/ Boise State University]
 +
* [https://iopscience.iop.org/article/10.1149/1945-7111/ad3f53/pdf ARJUNA: An Electrochemical Interface Mapping Probe for Solid-State Batteries] by a team from [https://www.ornl.gov/eeid Electrification & Energy Infrastructure Division, Oak Ridge National Laboratory]
 +
* [https://www.sciencedirect.com/science/article/abs/pii/S0956566324003075 Recent Advances in Implantable Sensors and Electronics Using Printable Materials for Advanced Healthcare] by a team from [http://uga.edu Georgia Tech], [https://plus.cnu.ac.kr/html/en/ Chungnam National University], [https://www.tacoma.uw.edu/ University of Washington Tacoma], and [https://med.emory.edu/ Emory University School of Medicine]
 +
* [https://www.pharmaexcipients.com/wp-content/uploads/2024/04/Pediatric-Formulations-Developed-by-Extrusion-Based-3D-Printing.pdf Pediatric Formulations Developed by Extrusion-Based 3D Printing: From Past Discoveries to Future Prospects], results compiled by a team from [https://www.cnrs.fr/en Centre National de la Recherche Scientifique et Technologique (CRNF)] and [https://www.delpharm.com/en/ Delpharm, France]
 +
* [https://chemrxiv.org/engage/chemrxiv/article-details/661d52d591aefa6ce19d3886 3D Printing Carbon-Carbon Composites With Multilayered Architecture for Enhanced Multifunctional Properties] by a team from [https://www.asu.edu/ Arizona State University], [https://www.cnrs.fr/en Centre National de la Recherche Scientifique et Technologique (CRNF)], [https://www.tamu.edu Texas A&M University], and [https://www.uga.edu/ University of Georgia]
 +
* [https://pubs.acs.org/doi/full/10.1021/acsomega.4c01171 Direct Ink Writing of Strained Carbon Nanotube-Based Sensors: Toward 4D Printable Soft Robotics] by a team from [https://cemse.kaust.edu.sa/ SAMA Laboratories, Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)] and [https://ee.kfupm.edu.sa/ Electrical Engineering, King Fahd University of Petroleum and Minerals (KFUPM)]
 +
* [https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12907/1290704/Liquid-crystal-elastomer-soft-robotic-arm-for-pick-and-place/10.1117/12.3000162.short#_=_ Liquid Crystal Elastomer Soft Robotic Arm for Pick-and-place Operation Controlled by Light] by a team from [https://www.tue.nl/en/ Technische Universiteit Eindhoven]
 +
* [https://utw10945.utweb.utexas.edu/sites/default/files/2023/079%20DevelopmentofMultimaterialAdditiveManufacturingSystemsforEmbeddedElectronic.pdf Development of Multimaterial Additive Manufacturing Systems for Embedded Electronics] by a team from the [https://www.me.psu.edu/ Department of Mechanical Engineering, Pennsylvania State University] and the [https://www.me.uh.edu/ Department of Mechanical Engineering, University of Houston]
 +
* [https://onlinelibrary.wiley.com/doi/10.1002/adfm.202201766 Direct Ink Writing of 4D Structural Colors] by a team from [https://www.tue.nl/en/research/research-groups/stimuli-responsive-functional-materials-devices/ Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry] and [https://www.tue.nl/en/research/institutes/institute-for-complex-molecular-systems/ Institute for Complex Molecular Systems (ICMS)] of the [https://www.tue.nl/en Eindhoven University of Technology (TU/e)]
 +
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202313567 A Flexible and Electrically Conductive Liquid Metal Adhesive for Hybrid Electronic Integration] by a team from [https://www.vt.edu/ Virginia Tech]
 +
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/adem.202301711 Low-Roughness 3D Printed Surfaces by Ironing for the Integration with Printed Electronics] by a team from the [https://lassonde.yorku.ca/eecs/ Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto]
 +
 +
[[#top|Top]]
 +
 +
== NTM, 2023 ==
 +
 +
* [https://link.springer.com/article/10.1007/s11665-023-08979-y Surface Oxide Removal in Preparation for Controlled Liquid Metal Embrittlement] by a team from the US Army Engineer Research and Development Center (EDRC)'s [https://www.erdc.usace.army.mil/Locations/CERL/ Construction Engineering Research Laboratory] and [https://www.erdc.usace.army.mil/Locations/GSL/ Geotechnical & Structures Laboratory]
 +
* [https://www.sciencedirect.com/science/article/pii/S0014305723005268 Vitrimer Chemistry for 4D Printing Formulation] by a team from [https://sut.ac.ir/en/ Sahand University of Technology, Iran], [https://www.ntu.ac.uk/ Nottingham Trent University, UK], and [https://www.deakin.edu.au/ Deakin University, Geelong, Australia]
 +
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/admt.202300188 Laser-Induced Graphene Electrodes for OrganicElectrochemical Transistors (OECTs)] by a team from [https://lassonde.yorku.ca/eecs/ Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto]
 +
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202302718 3D Printing-Enabled Design and Manufacturing Strategies for Batteries: A Review] by a team partially from [https://www.asu.edu/ Arizona State University]
 +
* [https://arinex.com.au/EMBC/pdf/full-paper_161.pdf Permeable Skin Patch with Miniaturized Octopus-Like Suckers for Biosignal Monitoring] by a team from [https://www.kaust.edu.sa/en/ King Abdullah University of Science and Technology (KAUST)]
 +
* [https://arinex.com.au/EMBC/pdf/full-paper_1011.pdf Evaluation of Low-Loss Polymer Switches for Multinuclear MRI/S*]by a team primarily from [https://www.tamu.edu/ Texas A&M University (TAMU)]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acsanm.3c02233 Energy Harvesting Using High-Strength and Flexible 3D-Printed Cellulose/Hexagonal Boron Nitride Nanosheet Composites] by a team from several departments of the [https://www.iitkgp.ac.in/ Institute of Technology, Kharagpur]
 +
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/mame.202300174 Competing Effects of Radio Frequency Fields on CarbonNanotube/Resin Systems: Alignment versus Heating] by a team from several departments of [https://www.tamu.edu/ Texas A&M University] and from [https://www.a-star.edu.sg/simtech Singapore Institute of Manufacturing Technology (SIMTech) Agency for Science Technology and Research (A*STAR)]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acsaem.3c01418 Enhancing Photoelectrochemical Performance of the Printed Nanoporous FeVO4 Photoanode by Dual-Layer CoOx–CoPi Catalysts] by a team from [https://duytan.edu.vn/ Duy Tan University, Vietman], [https://www.ntu.edu.sg/ Nanyang Technological University, Singapore], [https://en.huji.ac.il/ The Hebrew University of Jerusalem, Jerusalem , Israel], and [https://www.cityu.edu.hk/ City University of Hong Kong, China]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.3c03873 Sustainable Piezoelectric Energy Harvesting Using 3D Printing with Chicken Bone Extract] by a team from several departments of the [https://www.iitkgp.ac.in/ Indian Institute of Technology, Kharagpur] and the [https://www.drdo.gov.in/labs-and-establishments/defence-materials-and-stores-research-and-development-establishment-dmsrde Defence  Materials  and  Stores  Research  and  Development  Establishment (DMSRDE), Kanpur]
 +
* [https://www.sciencedirect.com/science/article/pii/S0959652623021637#sec2 Phase Change Materials Incorporation Into 3d Printed Geopolymer Cement: a Sustainable Approach to Enhance the Comfort and Energy Efficiency of Buildings] by a team from the [https://orbit.dtu.dk/en/organisations/department-of-civil-and-mechanical-engineering Department of Civil and Mechanical Engineering] and [https://orbit.dtu.dk/en/organisations/department-of-chemistry Department of Chemistry] of the [https://www.dtu.dk/english/ Technical University of Denmark] and the [https://www.utwente.nl/en/et/tfe/ Faculty of Engineering Technology, Department of Thermal and Fluid Engineering (TFE), University of Twente, the Netherlands]
 +
* [https://ieeexplore.ieee.org/abstract/document/10161540 Navigating Soft Robots through Wireless Heating] by a team from [https://www.cmu.edu/ Carnegie Mellon University]
 +
* [https://link.springer.com/article/10.1007/s11771-023-5340-6 Electrical Properties of Pvdf Films Fabricated by Direct Ink Writing] by a team from [https://en.csu.edu.cn/ Central South University, China]
 +
* [https://www.mdpi.com/2076-0825/12/5/189 Characteristic Analysis of Heterochiral TCP Muscle as a Extensile Actuator for Soft Robotics Applications] by a team from the [https://cec.georgiasouthern.edu/manufacturing-engineering/ Department of Manufacturing Engineering, Georgia Southern University]
 +
* [https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/ell2.12749 3D-Printed Elastomer Ternary Composites for  Piezoelectric Energy Generation] by a team from several departments of [https://www.tuskegee.edu/ Tuskegee University]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acsanm.2c05140 Biomimetic Flexible Electronic Materials from Silk Fibroin-MXene Composites Developed via Mussel-Inspired Chemistry as Wearable Pressure Sensors] by a team from the [https://chemie.uni-koeln.de/en/research/institute-of-inorganic-chemistry Institute of Inorganic Chemistry, Department of Chemistry, University of Cologne], [https://www.healthtech.dtu.dk/ Department of Health Technology, Technical University of Denmark], and [https://www.cmmc-uni-koeln.de/home Institute of Inorganic Chemistry, Department of Chemistry, University of Cologne]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acs.langmuir.2c03334 Self-Assembly-Driven Bi2S3 Nanobelts Integrated a Silk-Fibroin-Based 3D-Printed Aerogel-Based Scaffold with a Dual-Network Structure for Photothermal Bone Cancer Therapy] by a team from the [https://chemie.uni-koeln.de/en/research/institute-of-inorganic-chemistry Institute of Inorganic Chemistry, University of Cologne], the [https://www.polimi.it/en/scientific-research/research-at-the-politecnico/departments/department-of-chemistry-materials-and-chemical-engineering-giulio-natta Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano], and the [https://www.cmmc-uni-koeln.de/home Center for Molecular Medicine Cologne (CMMC)]
 +
* [https://www.pnas.org/doi/abs/10.1073/pnas.2220032120 3D Printing of Responsive Chiral Photonic Nanostructures] by a team from [https://www.cornell.edu/ Cornell University]'s [https://cals.cornell.edu/food-science Department of Food Science] and [https://sc.edu/ University of South Carolina]'s Departments of [https://sc.edu/study/colleges_schools/engineering_and_computing/departments/biomedical_engineering/index.php Biomedical] and [https://sc.edu/study/colleges_schools/engineering_and_computing/departments/chemical_engineering/index.php Chemical] Engineering
 +
* [https://onlinelibrary.wiley.com/doi/full/10.1002/admt.202201677 3D Printed Dry Electrodes for Electrophysiological Signal Monitoring: A Review] by a team from [https://www.kaust.edu.sa/en King Abdullah University of Science and Technology (KAUST)]
 +
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/smll.202206847 3D Printing-Assisted Self-Assembly to Bio-Inspired Bouligand Nanostructures] by a team from the [https://sc.edu/study/colleges_schools/engineering_and_computing/departments/chemical_engineering/index.php Department of Chemical Engineering, University of South Carolina]
 +
* [https://www.nature.com/articles/s41467-023-36214-8 Conductive and Elastic Bottlebrush Elastomers for Ultrasoft Electronics] by a team from a team from a variety of departments of the [https://www.utoronto.ca/ University of Toronto]
 +
* [https://scholarworks.utep.edu/cgi/viewcontent.cgi?article=4659&context=open_etd Processes & Toolchain For Automation Of Hybrid Direct-Write 3D Printing], a PhD thesis submitted to the [https://www.utep.edu/engineering/ece/ Department of Electrical and Computer Engineering, University of Texas at El Paso]
 +
 +
[[#top|Top]]
 +
 +
== NTM, 2022 ==
 +
 +
* [https://onlinelibrary.wiley.com/doi/full/10.1002/smll.202200951 4D Printing of Extrudable and Degradable Poly(Ethylene Glycol) Microgel Scaffolds for Multidimensional Cell Culture] by a team from the [https://www.colorado.edu/chbe/ Department of Chemical and Biological Engineering] and the [https://www.colorado.edu/biofrontiers/ BioFrontiers Institute] of the [https://www.colorado.edu/ University of Colorado - Boulder] and the [https://medschool.cuanschutz.edu/mstp Medical Scientist Training Program, School of Medicine, University of Colorado - Anschutz Medical Campus]
 +
* [https://iopscience.iop.org/article/10.1149/10916.0003ecst/meta Structured 3D Printed Dry ECG Electrodes Using Copper Based Filament] by a team from [https://www.kaust.edu.sa/en King Abdullah University of Science and Technology], [https://www.yachaytech.edu.ec/en/ Yachay Tech Universiy], and [https://www.kau.edu.sa/home_english.aspx King Abdulaziz University]
 +
* [https://www.mdpi.com/2072-666X/13/10/1606/pdf Extrusion-Based 3D Printing of Stretchable Electronic Coating for Condition Monitoring of Suction Cups] by a team from the [https://lgef.insa-lyon.fr/en/ Laboratoire de Génie Electrique et Ferroélectricité, Institut National des Sciences Appliquées, Université de Lyon] and the [https://hybria.fr/en/home/ Hybria Institute of Business and Technologies]
 +
* [https://scholarworks.uark.edu/cgi/viewcontent.cgi?article=1110&context=meeguht Enhancing Stability of High-Nickel Cathodes for Lithium-Ion Batteries through Additive Manufacturing of Cathode StructureBatteries through Additive Manufacturing] an Honors Thesis submitted to the [https://mechanical-engineering.uark.edu/ Mechanical Engineering Department of the University of Arkansas]
 +
* [https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12042/120420W/Additively-manufactured-unimorph-dielectric-elastomer-actuators-with-ferroelectric-particles-for/10.1117/12.2613128.short?SSO=1 Additively Manufactured Unimorph Dielectric Elastomer Actuators with Ferroelectric Particles for Enhanced Low-Voltage Actuation] by a team from the [https://daytonabeach.erau.edu/college-engineering/aerospace Aerospace Engineering Department of Embry-Riddle Aeronautical Univeristy]
 +
* [https://mdpi-res.com/d_attachment/polymers/polymers-14-01351/article_deploy/polymers-14-01351-v2.pdf Innovation in Additive Manufacturing Using Polymers: A Survey on the Technological and Material Developments], a review of "the most recent advances from technological and physico-chemical perspectives to improve several remaining issues in polymeric materials’ additive manufacturing", by a team from [https://www.uss.cl/ Universidad San Sebastián], [https://www.utem.cl/ Universidad Tecnológica Metropolitana, Santiago], and [https://www.csic.es/en/investigation/institutes-centres-units/institute-polymer-science-and-technology Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas], Chile
 +
 +
[[#top|Top]]
 +
 +
== NTM, 2021 ==
 +
 +
*[https://www.sciencedirect.com/science/article/abs/pii/S235249282100951X 4D-Actuators by 3D-Printing Combined with Water-based Curing] by a team from [https://www.hereon.de/institutes/active_polymers/index.php.en Institute of Active Polymers, Helmholtz-Zentrum Hereon]
 +
*[https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202106843 4D Printing of Engineered Living Materials] by a team from several departments at [https://www.tamu.edu/ Texas A&M University
 +
* [https://digitalcommons.georgiasouthern.edu/cgi/viewcontent.cgi?article=3539&context=etd Design and Development of Soft Earthworm Robot Driven by Fibrous Artificial Muscles] a thesis presented to [https://www.georgiasouthern.edu/ Georgia Southern University]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acsabm.1c00949 Comprehensive Review on Design and Manufacturing of Bio-scaffolds for Bone Reconstruction] by a team from [https://vit.ac.in/schools/smec School of Mechanical Engineering Vellore Institute of Technology, India]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acsami.1c12948 Printed Electronic Devices with Inks of TiS3 Quasi-One-Dimensional van der Waals Material] by a team from [https://www.ucr.edu/ University of California, Riverside] and [https://www.unl.edu/ University of Nebraska, Lincoln]
 +
* [https://www.mdpi.com/1999-4923/13/9/1524/pdf 3D Printing of Thermo-Sensitive Drugs] by a team from the [https://www.unisa.edu.au/ University of South Australia] and [http://www.aau.edu.et/ Addis Ababa University]
 +
* [https://advances.sciencemag.org/content/advances/7/29/eabg8433.full.pdf Printable Elastomeric Electrodes with Sweat-Enhanced Conductivity for Wearables] by a team from the [https://www.ntu.edu.sg/mse School of Materials Science and Engineering, Nanyang Technological University] and the [https://en.whu.edu.cn/Schools1/Faculty_of_Engineering.htm School of Electrical Engineering and Automation, Wuhan University]
 +
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/admt.202100361 Optimal Soft Composites for Under-Actuated Soft Robots] by a team from [https://www.sutd.edu.sg/ The Singapore University of Technology and Design]
 +
* [https://journals.sagepub.com/doi/full/10.1177/24726303211020297 Review of Low-Cost 3D Bioprinters: State of the Market and Observed Future Trends]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acsami.1c05082 3D Printing of Electrically Responsive PVC Gel Actuators]by a team from the [https://mae.ucsd.edu/ Mechanical and Aerospace Engineering] and [https://mae.ucsd.edu/matsci Materials Science and Engineering] departments of [https://ucsd.edu/ The University of California, San Diego]
 +
* [http://hyrel3d.net/papers/4D_Printing_with_Bio-based_Polymers_for_Adaptive_Wearable_Devices.pdf 4D Printing with Bio-based Polymers for Adaptive Wearable Devices], submitted in fulfillment of the requirements for the degree of Master of Design Innovation
 +
* [http://hyrel3d.net/papers/Automated_Fiber_Embedding_for_Soft_Mechatronic_Components.pdf Automated Fiber Embedding for Soft Mechatronic Components]  by a team from the [https://dmand.sutd.edu.sg/Digital Manufacturing and Design Centre] of the [http://www.sutd.edu.sg Singapore University of Technology and Design]
 +
* [https://www.sciencedirect.com/science/article/abs/pii/S2352940721000445 Silicone/Epoxy Hybrid Resins with Tunable Mechanical and Interfacial Properties for Additive Manufacture of Soft Robots] by a team from the [https://dmand.sutd.edu.sg/Digital Manufacturing and Design Centre] and the [https://epd.sutd.edu.sg/ Engineering Product Development Pillar] of the [http://www.sutd.edu.sg Singapore University of Technology and Design]
 +
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/aesr.202000045 3D-Printed Triboelectric Nanogenerators: State of the Art,Applications, and Challenges] by a team from the engineering schools of [https://www.deakin.edu.au/engineering Deakin University], [https://www.unimelb.edu.au/ The University of Melbourne], [https://grad.ucla.edu/programs/school-of-engineering-and-applied-science/bioengineering/ UCLA], and [http://www.mse.gatech.edu/ Georgia Tech]
 +
* [https://cecas.clemson.edu/~jbostwi/wp-content/uploads/2021/02/wtcb2021jmp.pdf Enhanced Wettability in Ultrasonic-Assisted Soldering to Glass Substrates], by a team from the [https://www.clemson.edu/cecas/departments/me/ Department of Mechanical Engineering, Clemson University]
 +
 +
[[#top|Top]]
 +
 +
== NTM, 2020 ==
 +
 +
* [https://www.sciencedirect.com/science/article/abs/pii/S1742706120307650 4D Printing of Shape-memory Polymeric Scaffolds for Adaptive Biomedical Implantation] by a team from the [http://catalog.missouri.edu/undergraduategraduate/collegeofengineering/mechanicalandaerospaceengineering/ Department of Mechanical and Aerospace Engineering], the [https://medicine.missouri.edu/departments/surgery Department of Surgery], the [https://foodscience.missouri.edu/ Food Science Program, Division of Food Systems & Bioengineering], and the [https://engineering.missouri.edu/academics/bbce/ Department of Biomedical, Biological & Chemical Engineering] of the [https://missouri.edu/ University of Missouri]
 +
* [https://dl.acm.org/doi/abs/10.1145/3432232 Morphing Circuit: An Integrated Design, Simulation, and Fabrication Workflow for Self-morphing Electronics] by a team from [https://www.cmu.edu Carnegie Mellon University] and [http://www.zju.edu.cn/english/ Zhejiang University, China]
 
* [https://www.tandfonline.com/doi/abs/10.1080/24725854.2020.1849876 An Integrated Manifold Learning Approach for High Dimensional Data Feature Extractions and its Applications to Online Process Monitoring of Additive Manufacturing] by a team from [https://www.ornl.gov/ Oak Ridge National Laboratory], [https://vt.edu/ Virginia Tech], and [https://go.okstate.edu/ Oklahoma Stata University], funded by the [https://www.nsf.gov/ National Science Foundation] and the [https://www.onr.navy.mil/ Office of Naval Research]
 
* [https://www.tandfonline.com/doi/abs/10.1080/24725854.2020.1849876 An Integrated Manifold Learning Approach for High Dimensional Data Feature Extractions and its Applications to Online Process Monitoring of Additive Manufacturing] by a team from [https://www.ornl.gov/ Oak Ridge National Laboratory], [https://vt.edu/ Virginia Tech], and [https://go.okstate.edu/ Oklahoma Stata University], funded by the [https://www.nsf.gov/ National Science Foundation] and the [https://www.onr.navy.mil/ Office of Naval Research]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S1350453320301703 Additive Manufacturing Techniques for Smart Prosthetic Liners] by a team from several departments of the [https://www.ucl.ac.uk/ University College London] in cooperation with the [https://www.rnoh.nhs.uk/ Royal National Orthopaedic Hospital, Stanmore, UK]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S1350453320301703 Additive Manufacturing Techniques for Smart Prosthetic Liners] by a team from several departments of the [https://www.ucl.ac.uk/ University College London] in cooperation with the [https://www.rnoh.nhs.uk/ Royal National Orthopaedic Hospital, Stanmore, UK]
Line 22: Line 143:
 
* [https://ieeexplore.ieee.org/abstract/document/9043493 Flexible Fiber Interconnects For Soft Mechatronics] by a team from the [https://www.sutd.edu.sg/ Singapore University of Technology and Design (SUTD)]
 
* [https://ieeexplore.ieee.org/abstract/document/9043493 Flexible Fiber Interconnects For Soft Mechatronics] by a team from the [https://www.sutd.edu.sg/ Singapore University of Technology and Design (SUTD)]
  
==== Published in 2019 ====
+
[[#top|Top]]
 +
 
 +
== NTM, 2019 ==
  
 
* [https://ieeexplore.ieee.org/abstract/document/8920352 UHF RFID-based Additively Manufactured Passive Wireless Sensor for Detecting Micrometeoroid and Orbital Debris Impacts] by a team from [https://erau.edu/degrees/bachelor/aerospace-engineering Aerospace Engineering at Embry-Riddle Aeronautical University]
 
* [https://ieeexplore.ieee.org/abstract/document/8920352 UHF RFID-based Additively Manufactured Passive Wireless Sensor for Detecting Micrometeoroid and Orbital Debris Impacts] by a team from [https://erau.edu/degrees/bachelor/aerospace-engineering Aerospace Engineering at Embry-Riddle Aeronautical University]
Line 30: Line 153:
 
*[https://res.mdpi.com/data/data-04-00071/article_deploy/data-04-00071.pdf?filename=&attachment=1 Isolation, Characterization, and Agent-Based Modeling of Mesenchymal Stem Cells in a Bio-construct for Myocardial Regeneration Scaffold Design] by a team from the [https://www.uao.edu.co/ Universidad Autónoma de Occidente de Cali - Colombia] and the [https://www.hes-so.ch/en/homepage-hes-so-1679.html University of Applied Sciences and Arts, Western Switzerland]
 
*[https://res.mdpi.com/data/data-04-00071/article_deploy/data-04-00071.pdf?filename=&attachment=1 Isolation, Characterization, and Agent-Based Modeling of Mesenchymal Stem Cells in a Bio-construct for Myocardial Regeneration Scaffold Design] by a team from the [https://www.uao.edu.co/ Universidad Autónoma de Occidente de Cali - Colombia] and the [https://www.hes-so.ch/en/homepage-hes-so-1679.html University of Applied Sciences and Arts, Western Switzerland]
  
==== Published in 2018 ====
+
[[#top|Top]]
 +
 
 +
== NTM, 2018 ==
  
 
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/admt.201800490 3D‐Printed Gastric Resident Electronics] by a team from [https://ki.mit.edu/ The Koch Institute for Integrative Cancer Research at MIT]
 
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/admt.201800490 3D‐Printed Gastric Resident Electronics] by a team from [https://ki.mit.edu/ The Koch Institute for Integrative Cancer Research at MIT]
Line 37: Line 162:
 
*[http://www.freepatentsonline.com/y2018/0320008.html Block Copolymer Ink Formulation for 3D Printing and Method of Making a 3D Printed Radiofrequency (RF) Device] by a team from the [http://web.mit.edu the Massachusetts Institute of Technology (MIT)] and [https://www.harvard.edu Harvard University]
 
*[http://www.freepatentsonline.com/y2018/0320008.html Block Copolymer Ink Formulation for 3D Printing and Method of Making a 3D Printed Radiofrequency (RF) Device] by a team from the [http://web.mit.edu the Massachusetts Institute of Technology (MIT)] and [https://www.harvard.edu Harvard University]
 
* [http://hyrel3d.net/papers/Hybrid_Processes_in_Additive_Manufacturing.pdf Hybrid Processes in Additive Manufacturing] by a team primarily from the [https://engineering.unl.edu/mme/ University of Nebraska–Lincoln's Department of Mechanical & Materials Engineering]
 
* [http://hyrel3d.net/papers/Hybrid_Processes_in_Additive_Manufacturing.pdf Hybrid Processes in Additive Manufacturing] by a team primarily from the [https://engineering.unl.edu/mme/ University of Nebraska–Lincoln's Department of Mechanical & Materials Engineering]
 +
*[https://www.sciencedirect.com/science/article/pii/S2214860417304013 Additive Manufacturing- A Review of 4D Printing and Future Applications] by a team from [https://www.esa.int/About_Us/ESTEC/ESTEC_European_Space_Research_and_Technology_Centre The European Space Research and Technology Center]
 +
* [https://www.researchgate.net/publication/329216477_Molecularly-Engineered_4D-Printed_Liquid_Crystal_Elastomer_Actuators Molecularly-Engineered, 4D-Printed Liquid Crystal Elastomer Actuators] by a team from the [https://be.utdallas.edu/ Bioengineering Department of University of Texas, Dallas]
 +
 +
[[#top|Top]]
  
==== Published in 2017 ====
+
== NTM, 2017 ==
  
 
* [https://youtu.be/3nKqwcXcEgY Additive Manufacturing of Toroid Inductor for Electronics Applications] by Chao Ding, [https://vt.edu Virginia Tech]
 
* [https://youtu.be/3nKqwcXcEgY Additive Manufacturing of Toroid Inductor for Electronics Applications] by Chao Ding, [https://vt.edu Virginia Tech]
Line 44: Line 173:
 
* [http://scholarworks.rit.edu/cgi/viewcontent.cgi?article=10830&context=theses A Preliminary Study of Conductive Filaments Printed Via Fused Filament Fabrication] by Smruti Ranjan Sahoo at [http://rit.edu Rochester Institute of Technology]
 
* [http://scholarworks.rit.edu/cgi/viewcontent.cgi?article=10830&context=theses A Preliminary Study of Conductive Filaments Printed Via Fused Filament Fabrication] by Smruti Ranjan Sahoo at [http://rit.edu Rochester Institute of Technology]
 
* [http://www.mdpi.com/1424-8220/17/9/2068/htm Review of Batteryless Wireless Sensors Using Additively Manufactured Microwave Resonators] in [http://www.mdpi.com/journal/sensors Sensors], a Journal of the [http://www.mdpi.com/ Multidisciplinary Digital Publishing Institute]
 
* [http://www.mdpi.com/1424-8220/17/9/2068/htm Review of Batteryless Wireless Sensors Using Additively Manufactured Microwave Resonators] in [http://www.mdpi.com/journal/sensors Sensors], a Journal of the [http://www.mdpi.com/ Multidisciplinary Digital Publishing Institute]
 +
*[http://pubs.acs.org/doi/abs/10.1021/acsami.7b11851 4D Printing of Liquid Crystal Elastomers] by a team from the [https://be.utdallas.edu/ Bioengineering Department of the University of Texas, Dallas]
 +
 +
[[#top|Top]]
  
==== Published in 2016 ====
+
== NTM, 2016 ==
  
 
*[http://hyrel3d.net/papers/Additive_Manufacturing_of_Planar_Inductor.pdf Additive Manufacturing of Planar Inductor for Power Electronics Applications] by a team from [http://vt.edu Virginia Tech]
 
*[http://hyrel3d.net/papers/Additive_Manufacturing_of_Planar_Inductor.pdf Additive Manufacturing of Planar Inductor for Power Electronics Applications] by a team from [http://vt.edu Virginia Tech]
 
* [http://hyrel3d.net/papers/Low-Cost,_Single_Platform,_Hybrid_Mfg_System_for_Hybrid_Passives.pdf A Low-Cost, Single Platform, Hybrid Manufacturing System for RF Passives], [http://www.ieee.org/index.html The Institute of Electrical and Electronics Engineers, Incorporated (IEEE)]
 
* [http://hyrel3d.net/papers/Low-Cost,_Single_Platform,_Hybrid_Mfg_System_for_Hybrid_Passives.pdf A Low-Cost, Single Platform, Hybrid Manufacturing System for RF Passives], [http://www.ieee.org/index.html The Institute of Electrical and Electronics Engineers, Incorporated (IEEE)]
*[http://hyrel3d.net/papers/Nano-Material_Based_Flexible_RF_Sensors.pdf Nano-Material Based Flexible Radio Frequency Sensors for Wearable Health and Environment Monitoring: Designs and Prototypes Utilizing 3D/Inkjet Printing Technologies], A Dissertation Presented to The Academic Faculty of [https://www.ece.gatech.edu/ The School of Electrical and Computer Engineering at Georgia Tech]
+
*[https://smartech.gatech.edu/bitstream/handle/1853/55685/LE-DISSERTATION-2016.pdf Nano-Material Based Flexible Radio Frequency Sensors for Wearable Health and Environment Monitoring: Designs and Prototypes Utilizing 3D/Inkjet Printing Technologies], A Dissertation Presented to The Academic Faculty of [https://www.ece.gatech.edu/ The School of Electrical and Computer Engineering at Georgia Tech]
 +
*[http://hyrel3d.net/papers/3D-4D_Printing_and_Stretchable_Conductive_Adhesives.pdf A Novel Approach to Integrating 3D/4D Printing and Stretchable Conductive Adhesive Technologies for High Frequency Packaging Applications] by a team from [http://www.gatech.edu/ Georgia Tech]
  
==== Published in 2015 ====
+
[[#top|Top]]
 +
 
 +
== NTM, 2015 ==
  
 
* [http://hyrel3d.net/papers/NinjaFlex_Filament_for_Antenna_Applications.pdf Infill Dependent 3D-Printed Material Based on NinjaFlex Filament for Antenna Applications], [http://www.ieee.org/index.html The Institute of Electrical and Electronics Engineers, Incorporated (IEEE)]
 
* [http://hyrel3d.net/papers/NinjaFlex_Filament_for_Antenna_Applications.pdf Infill Dependent 3D-Printed Material Based on NinjaFlex Filament for Antenna Applications], [http://www.ieee.org/index.html The Institute of Electrical and Electronics Engineers, Incorporated (IEEE)]
 
* [http://hyrel3d.net/papers/Novel_Strain_Sensor_Based_on_3D_Printing.pdf A Novel Strain Sensor Based on 3D Printing Technology and 3D Antenna Design], [http://www.ieee.org/index.html The Institute of Electrical and Electronics Engineers, Incorporated (IEEE)]
 
* [http://hyrel3d.net/papers/Novel_Strain_Sensor_Based_on_3D_Printing.pdf A Novel Strain Sensor Based on 3D Printing Technology and 3D Antenna Design], [http://www.ieee.org/index.html The Institute of Electrical and Electronics Engineers, Incorporated (IEEE)]
* [http://hyrel3d.net/papers/3D_Printed_Loop_Antenna_for_Wearable_and_IoT_Applications.pdf A Novel 3-D Printed Loop Antenna Using Flexible NinjaFlex Material for Wearable and IoT Applications], [http://www.ieee.org/index.html The Institute of Electrical and Electronics Engineers, Incorporated (IEEE)]
+
* [https://ieeexplore.ieee.org/document/7347155 A Novel 3-D Printed Loop Antenna Using Flexible NinjaFlex Material for Wearable and IoT Applications], [http://www.ieee.org/index.html The Institute of Electrical and Electronics Engineers, Incorporated (IEEE)]
 
* [http://hyrel3d.net/papers/RFID_Tag_Combining_3D_and_Inkjet_Printing.pdf Button-Shaped RFID Tag Combining Three-Dimensional and Inkjet Printing Technologies], [http://digital-library.theiet.org/content/journals/iet-map The IET Digital Library].
 
* [http://hyrel3d.net/papers/RFID_Tag_Combining_3D_and_Inkjet_Printing.pdf Button-Shaped RFID Tag Combining Three-Dimensional and Inkjet Printing Technologies], [http://digital-library.theiet.org/content/journals/iet-map The IET Digital Library].
 
* [http://hyrel3d.net/papers/Fully_3D-Printed_RF_Structures.pdf Demonstration and Characterization of Fully 3D-printed RF Structures], [http://www.ieee.org/index.html The Institute of Electrical and Electronics Engineers, Incorporated (IEEE)]
 
* [http://hyrel3d.net/papers/Fully_3D-Printed_RF_Structures.pdf Demonstration and Characterization of Fully 3D-printed RF Structures], [http://www.ieee.org/index.html The Institute of Electrical and Electronics Engineers, Incorporated (IEEE)]
* [http://hyrel3d.net/papers/RF_Characterization_of...NinjaFlex.pdf RF Characterization of 3D Printed Flexible Materials - NinjaFlex Filaments], [http://www.eumwa.org/en/euma/ The European Microwave Association (EuMA)]
+
* [https://ieeexplore.ieee.org/document/7345870 RF Characterization of 3D Printed Flexible Materials - NinjaFlex Filaments], [http://www.eumwa.org/en/euma/ The European Microwave Association (EuMA)]
 +
 
 +
[[#top|Top]]
 +
 
 +
== '''[[Reservoir_Heads|Unheated or Chilled Reservoir Printing]]''' ==
 +
 
 +
Also known as '''Robocasting''' or '''DIW''' (Direct Ink Writing), '''SEP''' (Semisolid Extrusion Printing), '''SSE''' (Semisolid Extrusion). '''3DCP''' (3D Concrete Printing), or '''DCC''' (Digital Concrete Construction).
  
== [[Reservoir_Heads|Unheated or Chilled Reservoir Printing]] ==
+
<span style="color: red;">These pages ran too long, and have been split off to the new '''[[Published_Papers_(DIW)|Published Papers (DIW)]]''' page.</span>
  
==== Published in 2020 ====
+
== '''[[Reservoir_Heads|Heated Reservoir Printing]]''' ==
  
* [https://www.sciencedirect.com/science/article/abs/pii/S0950061820337132 Designing 3D Printable Cementitious Materials with Gel-Forming Polymers] by a team from the Departments of [https://www.tntech.edu/engineering/programs/che/index.php Chemical Engineering] and [https://www.tntech.edu/cas/chemistry/index.php Chemistry] of [https://www.tntech.edu/ Tennessee Technological University] and the [https://www.nist.gov/ National Institute of Standards and Testing (NIST)]
+
Also known as '''DPE''' (Direct Powder Extrusion) or '''HME''' (Hot Melt Extrusion).
* [https://pubs.acs.org/doi/abs/10.1021/acsapm.0c00839 A Dual Approach in Direct Ink Writing of Thermally Cured Shape Memory Rubber Toughened Epoxy] by a team from the [https://engineering.case.edu/macromolecular-science-and-engineering Department of Macromolecular Science and Engineering, Case Western Reserve University] and the [https://web.chemcu.org/index.php/en/ Department of Chemistry, Chulalongkorn University, Thailand]
 
* [https://mail.google.com/mail/u/0/#inbox/FMfcgxwKjTPjgzMMXnXxdtpnrwGQwQrS Mechanics of Nozzle Clogging during direct ink writing of Fiber-Reinforced Composites] by a team from the [https://www.afrl.af.mil/RX/ Materials and Manufacturing Directorate of the US Air Force Research Laboratoy], the [https://udayton.edu/udri/ University of Dayton Research Institute], the [https://mabe.utk.edu/ Mechanical, Aerospace, and Biomedical Engineering Department or the University of Tennessee] and the [https://www.chess.cornell.edu/ Cornell High Energy Synchrotron Source]
 
* [https://ieeexplore.ieee.org/abstract/document/9244494 Composite Hydrogels and their application for 3D Bioprinting in Regenerative Medicine] by from the [http://www.mu-varna.bg/EN Medical University of Varna, Bulgaria]
 
* [https://ieeexplore.ieee.org/abstract/document/9224960 Effects of Co3O4 Addition on Magnetic properties of NiCuZn Ferrite Feedstock for 3D-printing Power Magnetic Components] by a team from [https://vt.edu/ Virginia Tech]'s [https://mse.vt.edu/ Department of Materials Science and Engineering], [https://ece.vt.edu/ Department of Electrical and Computer Engineering], and [https://cpes.vt.edu/ Center for Power Electronics Systems]
 
* [https://www.sciencedirect.com/science/article/pii/S2238785420318160 Ecofriendly Production of Bioactive Tissue Engineering Scaffolds Derived from Egg- and Sea-shells] by a team from the [https://www.tuskegee.edu/programs-courses/colleges-schools/coe/materials-science-and-engineering-home Department of Material Science and Engineering] and the [https://www.tuskegee.edu/programs-courses/colleges-schools/cvm/cvm-department-of-pathobiology Department of Pathobiology, College of Veterinary Medicine, Nursing and Allied Health] of [https://www.tuskegee.edu/ Tuskegee University]
 
* [https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202005560 Direct Ink Writing of a Light‐Responsive Underwater Liquid Crystal Actuator with Atypical Temperature‐Dependent Shape Changes] by a team from the [https://www.tue.nl/en/research/research-groups/stimuli-responsive-functional-materials-devices/ Stimuli-responsive Functional Materials & Devices (SFD) Group of the Department of Chemical Engineering and Chemistry of Eindhoven University of Technology]
 
* [https://iopscience.iop.org/article/10.1088/1748-605X/ab99d4/meta Silk Fibroin Reactive Inks for 3D Printing Crypt-like Structures] by a team from the [https://polymer.ims.uconn.edu/ Polymer Program, Institute of Materials Science, University of Connecticut] and the [https://cbe.engr.uconn.edu/ Chemical and Biomolecular Engineering, University of Connecticut]
 
* [https://www.freepatentsonline.com/y2020/0277195.html Additive-Free Carbon Particle Dispersions, Pastes, Gels, and Doughs] a patent application from the [https://www.molbiosci.northwestern.edu/ Department of Molecular Biosciences of Northwestern University]
 
* [https://link.springer.com/article/10.1208/s12249-020-01790-1 Development of 3D-Printed Layered PLGA Films for Drug Delivery and Evaluation of Drug Release Behaviors] by a team from the [https://www.fdu.edu/academics/colleges-schools/pharmacy/ School of Pharmacy and Health Sciences, Fairleigh Dickinson University]
 
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/mabi.202000106 3D Printing of Cytocompatible Gelatin‐Cellulose‐Alginate Blend Hydrogels] by a team from the Engineering departments of [https://career.ku.edu.tr/en/chemical-biological-engineering/ Koç University] and [https://bau.edu.tr/academic/12581-faculty-of-engineering-and-natural-sciences Bahcesehir University], both in Turkey
 
* [https://www.sciencedirect.com/science/article/abs/pii/S0955221920306336 Effects of SiO2 Inclusions on Sintering and Permeability of NiCuZn Ferrite for Additive Manufacturing of Power Magnets] by a multi-disciplinary team from [https://vt.edu/ Virginia Tech]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S0955221920306063#! Transparent Alumina Ceramics Fabricated by 3D Printing and Vacuum Sintering] by a team from the [https://www.alfred.edu/academics/colleges-schools/engineering/index.cfm Kazuo Inamori School of Engineering], [https://www.alfred.edu/academics/colleges-schools/college-ceramics/index.cfm New York State College of Ceramics], [https://www.alfred.edu/ Alfred University, Alfred, NY]
 
* [https://aip.scitation.org/doi/full/10.1063/5.0004120 Additive Manufacturing and Characterization of AgI and AgI–Al2O3 Composite Electrolytes for Resistive Switching Devices], a paper from the [https://afresearchlab.com/ US Air Force Research Laboratory] using a Nordsen head on a Hyrel printer.
 
* [https://cdn.vanderbilt.edu/vu-my/wp-content/uploads/sites/2814/2020/06/19085235/Neely_Dissertation.pdf Additively Manufactured Thermite-based Energetics: Characterization and Applications], a PhD dissertation submitted to the [https://engineering.vanderbilt.edu/me/ Mechanical Enginnering Department of Vanderbilt University]
 
* [https://iopscience.iop.org/article/10.1088/1748-605X/aba40c/meta Effect of Sterilization Treatment on Mechanical Properties, Biodegradation, Bioactivity and Printability of GelMA Hydrogels (in Tissue Engineering)] by a team from the [https://uwaterloo.ca/waterloo-composite-biomaterial-systems-lab/ Composite Biomaterial Systems Laboratory of the University of Waterloo]
 
* [https://www.sciencedirect.com/science/article/pii/S0266353819335791 Impact of Filler Composition on Mechanical and Dynamic Response of 3-D Printed Silicone-based Nanocomposite Elastomers] using a [https://www.nordson.com/en Nordson Ultimus™ V] dispenser on Hyrel equipment, but a team from [http://lanl.gov Los Alamos National Laboratory], [http://sandia.gov Sandia National Laboratory], and [https://www.natureindex.com/institution-outputs/south-korea/department-of-energy-engineering-gntech/595e2817140ba06b4e8b4569 Department of Energy Engineering, Gyeongnam National University of Science and Technology (South Korea)]
 
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.202000311 Fabrication and Characterization of Fe<sub>16</sub>N<sub>2</sub> Micro‐Flake Powders and Their Extrusion Based 3D Printing into Permanent Magnet Form] by a multi-disciplinary, multi-university team from Istanbul, Turkey
 
* [https://patents.google.com/patent/US20200181014A1/en Cement-Based Direct Ink for 3D Printing of Complex Architected Structures ], a patent application by a team including members of [https://msne.rice.edu/ Department of Materials Science and NanoEngineering, Rice University]
 
* [https://pubs.acs.org/doi/abs/10.1021/acsami.0c07331 Reactive 3D Printing of Shape Programmable Liquid Crystal Elastomer Actuators] by a team from the [https://msne.rice.edu/ Department of Materials Science and NanoEngineering of Rice University]
 
* [https://pubs.acs.org/doi/abs/10.1021/acsami.0c01497 Injectable Gelatin Microgel-based Composite Ink for 3D Bioprinting in Air] by a team from the [https://www.bme.ufl.edu/ University of Florida's Biomedical Engineering Department]
 
* [https://www.sciencedirect.com/science/article/pii/S2590123020300335 Enabling Compact GTL by 3D-Printing of Structured Catalysts] by a team from [https://www.uq.edu.au/ The University of Queensland]'s [https://www.chemeng.uq.edu.au/ School of Chemical Engineering] and [https://aibn.uq.edu.au/ Australian Institute for Bioengineering and Nanotechnology] and also by [http://www.apied.co/ The Australian Petroleum International Exploration and Development (APIED)]
 
* [http://www.freepatentsonline.com/y2020/0109299.html Bio-Ink Structures and Methods of Producing the Same], a patent application by [https://www.llnl.gov Lawrence Livermore National Laboratory]
 
* [https://www.sciencedirect.com/science/article/pii/S0272884220308956 3D Printing of Transparent YAG Ceramics using Copolymer-Assisted Slurry] by a team from [https://www.alfred.edu/academics/colleges-schools/college-ceramics/index.cfm The New York State College of Ceramics at Alfred University]
 
* [https://www.sciencedirect.com/science/article/pii/S2352492819303617 On Design for Additive Manufacturing (DAM) Parameter and Its Effects on Biomechanical Properties of 3D Printed Ceramic Scaffolds] by a team mostly from Australian Universities.
 
* [https://www.sciencedirect.com/science/article/abs/pii/S2211285520302330#! All 3D-printed Stretchable PiezoElectric NanoGenerator (PENG) with Non-protruding Kirigami Structure] by a team from [http://www.mse.ntu.edu.sg/Pages/Home.aspx The School of Materials Science and Engineering, Nanyang Technological University] and [https://www.share-huj.edu.sg/newcreate Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE)]
 
* [https://books.google.com/books?hl=en&lr=&id=RLvTDwAAQBAJ&oi=fnd&pg=PA15&ots=xJ25ErPLYp&sig=N0_q36v150zggdku_u3s76ACLso#v=onepage&q&f=false Opportunities and Challenges of 3D-Printed Pharmaceutical Dosage Forms] by  Adam Procopio from [https://www.merck.com/index.html Merck Pharmceuticals]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S0010218020300328 Experimental Observation of the Heat Transfer Mechanisms that drive Propagation in Additively Manufactured Energetic Materials] by a team from [https://www.cee.ucr.edu/ the Department of Chemical and Environmental Engineering, University of California, Riverside] and [https://chbe.umd.edu/ the Department of Chemical and Biomolecular Engineering, University of Maryland, College Park]
 
* [https://www.sciencedirect.com/science/article/pii/S2214860419321797 3D Printable Magnesium Oxide Concrete: Towards Sustainable Modern Architecture] by a team from [https://nyuad.nyu.edu/en/ New York University, Abu Dhabi]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S2213846319301397 Soldered Copper Lap Joints using Reactive Material Architectures as a Heat Source] by a team from the [https://engineering.vanderbilt.edu/me/ Department of Mechanical Engineering, Vanderbilt University]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S001021802030033X Combustion of 3D Printed 90 WT% Loading Reinforced Nanothermite] by a team from [https://www.cee.ucr.edu/ the Department of Chemical and Environmental Engineering, University of California, Riverside] and [https://chbe.umd.edu/ the Department of Chemical and Biomolecular Engineering, University of Maryland, College Park]
 
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/app.49043 Photocurable Pentaerythritol Triacrylate/Lithium Pphenyl‐2,4,6‐trimethylbenzoylphosphinate‐based Ink for Extrusion‐based 3D Printing of Magneto‐responsive Materials] by a team from [https://international.bahcesehir.edu.tr/ Bahçeşehir University], [https://www.sabanciuniv.edu/en Piri Reis University], and [https://www.sabanciuniv.edu/en Sabanci University] in Istanbul
 
* [https://aip.scitation.org/doi/full/10.1063/1.5134089 Spatially Focused Microwave Ignition of Metallized Energetic Materials], by a team from the Engineering Departments of [https://admissions.ucr.edu/colleges/marlan-and-rosemary-bourns-college-of-engineering University of California, Riverside] and the [https://eng.umd.edu/ University of Maryland].
 
* [https://ieeexplore.ieee.org/abstract/document/8956042 Additive Manufacturing with Strontium Hexaferrite-Photoresist Composite] by a team from several departments at [http://www.ucla.edu/ The University of California, Los Angeles (UCLA)]
 
* [https://journals.sagepub.com/doi/abs/10.1177/0361198120902704 Early-Age Performance of 3D Printed Carbon Nanofiber and Carbon Microfiber Cement Composites] by a team from the [https://engineering.vanderbilt.edu/cee/ Department of Civil and Environmental Engineering, Vanderbilt University]
 
* [https://pubs.acs.org/doi/abs/10.1021/acsami.9b15451 Cross-linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects] by a team from the [https://www.bme.ufl.edu/ University of Florida's Biomedical Engineering Department]
 
  
==== Published in 2019 ====
+
== DPE, HME 2025 ==
  
* [https://books.google.com/books?hl=en&lr=&id=Gs2-DwAAQBAJ&oi=fnd&pg=PA151&ots=yrumKbUKKl&sig=mCVVmpFYc00ZKbzyEZ1Vgzzqh18#v=onepage&q&f=false Biodegradable Polymer Blends for Food Packaging Applications], a chapter in "Food Packaging: Innovations and Shelf-Life", by a team from [https://www.tuskegee.edu/programs-courses/colleges-schools/coe/materials-science-and-engineering-home The Department of Materials Science and Engineering of Tuskegee University]
+
* [https://scholar.google.com/scholar_url?url=https://flore.unifi.it/bitstream/2158/1420778/1/PhD_Thesys_Ruggero_Rossi-signed.pdf&hl=en&sa=X&d=10799369571376432293&ei=6f0SaOHKKIWlieoPxdD2yAY&scisig=AFWwaeZV7rJJFopzUPcjAKPNiC4Q&oi=scholaralrt&hist=QZPgiEkAAAAJ:18370435948786443487:AFWwaeaEM0xeEgrLLW3xIdc2G8Zs&html=&pos=0&folt=kw Smart Materials Based on Azo Dyes: From Light-responsive Adhesives to Artificial Muscles] a PhD thesis submitted to [https://flore.unifi.it/ FLORE (FLOrence REsearch), Florence]
* [https://www.nature.com/articles/s41598-019-53687-0 Analysis of Free Chlorine in Aqueous Solution at Very Low Concentration with Lateral Flow Tests] by [https://www.tu-darmstadt.de/index.en.jsp TU Darmstadt]
+
* [https://pubs.acs.org/doi/abs/10.1021/acs.macromol.5c00176 High Molecular Weight Biobased Long-Chain Aliphatic Polyesters with Degradability: Insights into Mimicking Polyethylene] by a team from [https://sc.edu/study/colleges_schools/chemistry_and_biochemistry/ Department of Chemistry and Biochemistry, University of South Carolina], [https://www.clemson.edu/cecas/departments/mse/ Department of Materials Science and Engineering, Clemson University], [https://engineering.uga.edu/degree/bs-mechanical-engineering/ Department of Mechanical Engineering, College of Engineering, University of Georgia], and [https://chemistry.uchicago.edu/ Department of Chemistry, University of Chicago, Chicago, Illinois]
* [https://pubs.acs.org/doi/abs/10.1021/acsami.9b14111 Intrinsic Thermal Desorption in a 3D Printed Multi-Functional Composite CO2 Sorbent with Embedded Heating Capability] by a team from the [https://www.colorado.edu/lab/whiting/ Boulder Experimental Electronics and Manufacturing Laboratory of the University of Colorado, Boulder]
+
* [https://link.springer.com/article/10.1007/s42247-025-01043-6 Development of 3D-printed PCL Scaffolds Enriched With Hyaluronic Acid and Gallic Acid for Wound Dressing] by a team from [https://www.marmara.edu.tr/en Marmara University]'s [https://nbuam.marmara.edu.tr/en Center for Nanotechnology & Biomaterials Application and Research], [https://mte.eng.ua.edu/ Department of Metallurgical and Materials Engineering], [https://bioe-eng.marmara.edu.tr/en/about-bioe Department of Bioengineering], [https://eczacilik.marmara.edu.tr/en/departments/basic-pharmaceutical-sciences/department-of-pharmaceutical-basic-sciences Department of Basic Pharmaceutical Sciences], and the [https://lahore.comsats.edu.pk/ircbm/ Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University, Lahore Campus, Islamabad]
* [https://link.springer.com/article/10.1007/s12274-019-2534-1 3D Printing an Electrode of Living Bacteria] by a team from [https://www.chemistry.ucsc.edu/ Department of Chemistry and Biochemistry, University of CaliforniaSanta Cruz]
+
* [https://ieeexplore.ieee.org/abstract/document/10881533/ Optimizing Different Methods of Fabricating 3D Printed UV Blocking Sheets for Solar Cells] by a team from [https://www.kaust.edu.sa/en/ King Abdullah University of Science and Technology (KAUST)], [https://kfupm.edu.sa/ King Fahd University of Petroleum and Minerals (KFUPM)], and [https://www.uj.edu.sa/en University of Jeddah (UJ)]
* [https://www.sciencedirect.com/science/article/pii/S0010218019303864#! Ignition and Combustion Analysis of Direct Write Fabricated Aluminum/Metal Oxide/PVDF Films], by a team from the Engineering Departments of [https://admissions.ucr.edu/colleges/marlan-and-rosemary-bourns-college-of-engineering University of California, Riverside] and the [https://eng.umd.edu/ University of Maryland].
+
* [https://advanced.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.202416621 Coaxial Direct Ink Writing of Cholesteric Liquid Crystal Elastomers in 3D Architectures] by a team from [https://mse.seas.upenn.edu/ Department of Materials Science and Engineering, University of Pennsylvania], [https://wyss.harvard.edu/ Wyss, Institute for Biologically Inspired Engineering, Harvard University], and [https://www.llnl.gov/ Lawrence Livermore National Laboratory]
* [https://search.proquest.com/openview/389f76ce4dcf2de3c02855237d8360ef/ Hydroxyapatite Structures Created by Additive Manufacturing with Extruded Photopolymer] by a team from the [https://www.engr.colostate.edu/ Colorado State University College of Engineering]
+
* [https://4spepublications.onlinelibrary.wiley.com/doi/10.1002/pc.29535 Direct Ink Writing Of Piezoresistive Isoprene Rubber Nanocomposites] by a team from [https://www.txst.edu/ Texas State University]
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/prep.201900159 Rheological Considerations for Binder Development in Direct Ink Writing of Energetic Materials] by a team from the [http://www.mse.gatech.edu/ School of Materials Science and Engineering (MSE) at Georgia Tech]
 
* [https://www.osti.gov/servlets/purl/1564202 3D Printed Layer of Polyaniline-Based Conductive Polymer for Lightning Strike Protection of Carbon Fiber Reinforced Plastics (CFRPs)] by a team from [http://ornl.gov Oak Ridge National Laboratory]
 
* [https://link.springer.com/chapter/10.1007/10_2019_108 Bioprinting Technologies in Tissue Engineering], part of the [https://link.springer.com/bookseries/10 Advances in Biochemical Engineering/Biotechnology] book series.
 
* [https://www.sciencedirect.com/science/article/pii/S001430571931002X 3D-Printability of Aqueous poly(ethylene oxide)(PEO) Gels] by a team primarily from the [https://meditsiiniteadused.ut.ee/en Faculty of Medicine, University of Tartu]
 
* [https://doi.org/10.1002/adem.201900604 A New Approach to 3D Printing Dense Ceramics by Ceramic Precursor Binders] by [https://scholars.huji.ac.il/magdassi/home Prof. Shlomo Magdassi's] group at [http://new.huji.ac.il/en The Hebrew University of Jerusalem]  
 
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.201900158 Additive Manufacturing of 3D Structures Composed of Wood Materials] by [https://scholars.huji.ac.il/magdassi/home Prof. Shlomo Magdassi's] group at [http://new.huji.ac.il/en The Hebrew University of Jerusalem]
 
* [https://patentimages.storage.googleapis.com/3d/0a/dd/7cbdffd6d5f5ef/US20190168446A1.pdf Three-Dimensional Printing Control], a patent application by a team from [https://c3dmaterials.com/ Chromatic 3D Materials]
 
* [https://patentimages.storage.googleapis.com/33/b4/42/fe445f0a06a898/US20190167961A1.pdf Methods and systems for precision application of agents to a target surface], a patent application by a team from [https://us.pg.com/ Procter & Gamble]
 
* [https://opencommons.uconn.edu/cgi/viewcontent.cgi?article=2464&context=gs_theses hBN-Acrylate Composite Printing: Stereolithography and UV-Assisted Direct Write], a Masters' Thesis from the [https://uconn.edu/ University of Connecticut]
 
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201900142 Printability of Methacrylated Gelatin upon Inclusion of a Chloride Salt and Hydroxyapatite Nano‐Particles] by a team from [https://uwaterloo.ca/waterloo-composite-biomaterial-systems-lab/ the Composite Biomaterial Systems Laboratory, Systems Design Engineering, University of Waterloo]
 
* [https://www.nature.com/articles/s41467-019-10061-y Extremely Stretchable and Self-Healing Conductor Based on Thermoplastic Elastomer for All-Three-Dimensional Printed Triboelectric Nanogenerator] by a team from [http://www.mse.ntu.edu.sg/Pages/Home.aspx The School of Materials Science and Engineering, Nanyang Technological University] and [https://www.share-huj.edu.sg/newcreate Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE)]
 
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.201801553 Printing Therapeutic Proteins in 3D using Nanoengineered Bioink to Control and Direct Cell Migration]  by a team by a team from [http://www.tamu.edu/ Texas A&M University].
 
* [https://aip.scitation.org/doi/full/10.1063/1.5088801 Bactericidal Activity of 3D-printed Hydrogel Dressing Loaded with Gallium Maltolate] by a team from the [https://engineering.tamu.edu/biomedical Department of Biomedical Engineering], [http://www.tamu.edu Texas A&M University]
 
* [https://www.sciencedirect.com/science/article/pii/S0264127519302278 Extrudable Hydroxyapatite / Plant Oil-based Biopolymer Nanocomposites for Biomedical Applications: Mechanical Testing and Modeling] by a team from [https://uwaterloo.ca/systems-design-engineering/?utm_source=uwaterloo.ca%2Fengineering&utm_medium=site The Systems Design Engineering Department of The University of Waterloo, Canada]
 
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201900469 3D Printed Multifunctional, Hyperelastic Silicone Rubber Foam] by a team from the [https://engineering.case.edu/macromolecular-science-and-engineering Macromolecular Science & Engineering] Department of [https://case.edu/ Case Western Reserve University]
 
* [https://patents.google.com/patent/US20190077071A1/en Extrusion Printing of Liquid Crystal Elastomers], a patent application by a team from the [https://be.utdallas.edu/ Bioengineering Department of the University of Texas, Dallas]
 
* [https://www.mdpi.com/1996-1944/12/5/817/pdf Tailoring a Silver Paste for Additive Manufacturing of Co-Fired Ferrite Magnetic Components] by a team from [http://vt.edu Virginia Tech]
 
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201808424 3D Printing of a Thermo- and Solvatochromic Composite Material Based on a Cu(II)–Thymine Coordination Polymer with Moisture Sensing Capabilities] by a team from [http://www.mse.ntu.edu.sg/Research/create/Pages/Home.aspx Nanyang Technological University (Singapore) and the Hebrew University of Jerusalem)]
 
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.201801048 Advancing Frontiers in Bone Bioprinting], by a team primarily from [http://www.ucla.edu/ The University of California at Los Angeles]
 
* [https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.9b00066 Direct Writing of Tunable Living Inks for Bioprocess Intensification] in [https://pubs.acs.org/journal/nalefd ACS's Nano Letters]
 
* [https://pubs.acs.org/doi/abs/10.1021/acsami.8b13792 Gellan Fluid Gel as a Versatile Support Bath Material for Fluid Extrusion Bioprinting] by a team from the [https://www.bme.ufl.edu/ University of Florida's Biomedical Engineering Department]
 
* [https://arc.aiaa.org/doi/abs/10.2514/6.2019-1239 Microwave Control of Composite Solid Propellant Flame Spread Through Eddy Current Heating of Wired/Foiled Propellant] by a team from [https://www.me.iastate.edu/ Iowa State University's Mechanical Engineering Department]
 
* [https://link.springer.com/article/10.1007/s41779-018-00299-y Developments of 3D polycaprolactone/beta-tricalcium phosphate/collagen Scaffolds for Hard Tissue Engineering] by a multi-disciplinary, multi-university team from Istanbul, Turkey
 
* [https://pubs.acs.org/doi/abs/10.1021/acs.molpharmaceut.8b00836 3D Printing of Poloxamer 407 Nanogel Discs and Their Applications in Adjuvant Ovarian Cancer Therapy] by a team from the [https://www.stlcop.edu/ St. Louis College of Pharmacy]
 
  
==== Published in 2018 ====
+
[[#top|Top]]
  
*[https://www.sciencedirect.com/science/article/pii/S2214289418300504 Nano Silica-Carbon-Silver Ternary Hybrid Induced Antimicrobial Composite Films for Food Packaging Application] by a team from the [https://www.tuskegee.edu/programs-courses/colleges-schools/coe/materials-science-and-engineering-home Materials Science & Enginnernig Department of Tuskegee University]
+
== DPE, HME 2024 ==
*[http://sffsymposium.engr.utexas.edu/sites/default/files/2018/078%20AdditiveManufacturingofAluminaComponentsbyEx.pdf Additive Manufacturing of Alumina Components by Extrusion of in-situ UV-Cured Pastes] by a team from [https://www.sandia.gov Sandia National Laboratory] and [http://cmem.unm.edu/ The University of New Mexico's Center for MicroEngineered Materials]
 
*[https://onlinelibrary.wiley.com/doi/pdf/10.1002/adhm.201801353 Hydrocolloid Architectural Design of 3D Printed Scaffolds Controls the Volume and Functionality of Newly Formed Bone] by a team from the [https://sydney.edu.au/engineering/about/school-of-aerospace-mechanical-and-mechatronic-engineering.html/ School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney] and the [http://www.chemistry.unsw.edu.au/ School of Chemistry, University of New South Wales, Sydney]
 
*[https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.201800343 Hydrocolloid Inks for 3D Printing of Porous Hydrogels] by a team with members from [https://engineering.tamu.edu/biomedical/index.html The Department of Biomedical Engineering, Texas A&M University], [https://www.bme.utexas.edu/ The Department of Biomedical Engineering, University of Texas at Austin], and [https://chme.nmsu.edu/ The Department of Chemical and Materials Engineering, New Mexico State University]
 
*[https://www.sciencedirect.com/science/article/pii/S2214860417304013 Additive Manufacturing- A Review of 4D Printing and Future Applications] by a team from [https://www.esa.int/About_Us/ESTEC/ESTEC_European_Space_Research_and_Technology_Centre The European Space Research and Technology Center]
 
*[https://www.sciencedirect.com/science/article/pii/S0142961218306641 Improved In Situ Seeding of 3D Printed Scaffolds using Cell-Releasing Hydrogels] by a team with members from [https://engineering.tamu.edu/biomedical/index.html The Department of Biomedical Engineering, Texas A&M University], [https://www.bme.utexas.edu/ The Department of Biomedical Engineering, University of Texas at Austin], and [https://bioengineering.rice.edu/ The Department of Bioengineering, Rice University].
 
* [https://opencommons.uconn.edu/cgi/viewcontent.cgi?article=1601&context=srhonors_theses Effect of Silk-Based Hydrogel Topography on Intestinal Epithelial Cell Morphology and Wound Healing In Vitro] a thesis by Marisa E. Boch from the [https://cbe.engr.uconn.edu Department of Chemical and Biomolecular Engineering] at the [http://uconn.ecu University of Connecticut]
 
  
*[https://www.researchgate.net/profile/Homa_Maleki2/publication/325559793_Compressible_thermally_insulating_and_fire_retardant_aerogels_through_self-assembling_the_silk_fibroin_biopolymer_inside_the_silica_structure_-_An_approach_towards_3D_printing_of_aerogels/links/5b2ca6930f7e9b0df5ba7281/Compressible-thermally-insulating-and-fire-retardant-aerogels-through-self-assembling-the-silk-fibroin-biopolymer-inside-the-silica-structure-An-approach-towards-3D-printing-of-aerogels.pdf Compressible, Thermally Insulating, and Fire Retardant Aerogels through Self-Assembling Silk Fibroin Biopolymers Inside a Silica Structure - An Approach towards 3D Printing of Aerogels] by a team from the [https://www.uni-salzburg.at/index.php?id=210387&L=1 Chemistry and Physics of Materials Department] of [https://www.uni-salzburg.at/index.php?id=52&L=1 The University of Salzburg] and [https://www.chemie.uni-koeln.de/forschung_ac.html?&L=1 School of Inorganic Chemistry] at [http://www.portal.uni-koeln.de/9441.html?L=1 The University of Cologne].
+
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202411812 Reprocessable and Mechanically Tailored Soft Architectures Through 3D Printing of Elastomeric Block Copolymers] by a team from [https://www.princeton.edu/ Princeton University]'s departments of [https://cbe.princeton.edu Chemical and Biological Engineering] and [https://mae.princeton.edu/ Mechanical and Aerospace Engineering]
 +
* [https://pubs.acs.org/doi/full/10.1021/acsomega.4c05664 3D Printing of Thermally Responsive Shape Memory Liquid Crystalline Epoxy Networks] by a team from [https://tickle.utk.edu/mse/ Department of Materials Science and Engineering, The University of Tennessee, Knoxville], [http://en.mse.ustb.edu.cn/ School of Materials Science and Engineering, University of Science and Technology, Beijing], [https://neutrons.ornl.gov/sns Spallation Neutron Source, Oak Ridge National Laboratory], and [https://crc.tennessee.edu/ Center for Renewable Carbon, University of Tennessee, Knoxville]
 +
* [https://pubs.acs.org/doi/full/10.1021/acsaenm.4c00158 Thermal Weathering of 3D-Printed Lunar Regolith Simulant Composites] by a team from [https://jseg.space Jacobs Space Exploration Group, NASA Marshall Space Flight Center] and from several departments of [https://www.gatech.edu/ Georgia Institute of Technology (GATECH)]
 +
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/app.55423 3D Printing of Cyanate Ester Resins With Interpenetration Networks for Enhanced Thermal and Mechanical Properties] by a team from the [https://www.utep.edu/ University of Texas at El Paso]
 +
* [https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/65f1e6239138d231616557e8/original/bio-inspired-3d-printing-of-layered-structures-utilizing-stabilized-amorphous-calcium-carbonate-within-biodegradable-matrices.pdf Bio-Inspired 3D Printing of Layered Structures Utilizing Stabilized Amorphous Calcium Carbonate within Biodegradable Matrices] by a team from the [https://int.technion.ac.il/programs/graduate-school/materials-science-and-engineering/ Department of Materials Science and Engineering] and the [https://rbni.technion.ac.il/ Russell Berrie Nanotechnology Institute] of [https://www.technion.ac.il/en/home-2/ Technion, the Israel Institute of Technology]
 +
* [https://www.mdpi.com/1999-4923/16/4/437 3D Printing Direct Powder Extrusion in the Production of Drug Delivery Systems: State of the Art and Future Perspectives] by the [http://farmacia.us.es/portal/ Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla]
 +
* [https://www.mdpi.com/1999-4923/16/4/441/pdf&hl=en&sa=X&d=3300068694145389111&ei=7r8AZrbdFtGcy9YPk4yogAU&scisig=AFWwaeYAnwMJiM_DsBJYoKmbfDwX&oi=scholaralrt&hist=QZPgiEkAAAAJ:18370435948786443487:AFWwaeaEM0xeEgrLLW3xIdc2G8Zs&html=&pos=1&folt=kw Pediatric Formulations Developed by Extrusion-Based 3D Printing: From Past Discoveries to Future Prospects] by a team from [https://utcbs.u-paris.fr/en/about-us/ CNRS, INSERM, Chemical and Biological Technologies for Health Group (UTCBS), Université Paris Cité] and [https://www.delpharm.com/ Delpharm Reims,]
 +
* [https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/65f1e6239138d231616557e8/original/bio-inspired-3d-printing-of-layered-structures-utilizing-stabilized-amorphous-calcium-carbonate-within-biodegradable-matrices.pdf Bio-inspired 3D-printing of Layered Amorphous Calcium Carbonate Composites] by a team from [https://www.technion.ac.il/en/home-2/ Technion - Israel Institute of Technology]
  
* [https://www.nature.com/articles/s41467-018-04800-w.pdf Covalent-Supramolecular Hybrid Polymers as Muscle-Inspired Anisotropic Actuators] by an interdisciplinary team from [https://www.northwestern.edu Northwestern University]. ''The 3D printing experiments were supported by the '''[http://www.wpafb.af.mil/afrl.aspx Air Force Research Laboratory]''' under agreement number FA8650-15-2-5518''
+
[[#top|Top]]
*[http://pubs.rsc.org/en/content/articlelanding/2018/mh/c8mh00296g#!divAbstract Fully 2D and 3D Printed Anisotropic Mechanoluminescent Objects and their Application for Energy Harvesting in the Dark] by [https://scholars.huji.ac.il/magdassi/home Prof. Shlomo Magdassi's] group at [http://new.huji.ac.il/en The Hebrew University of Jerusalem].
 
* [http://www.pnas.org/content/early/2018/05/11/1800298115.short Additive-free Carbon Nanotube Dispersions, Pastes, Gels, and Doughs in Cresols] by a team from [https://www.northwestern.edu/ Northwestern University]
 
* [https://onlinelibrary.wiley.com/doi/full/10.1002/admt.201800060 3D Printing of Hierarchical Porous Silica and α‐Quartz] by a team from [https://www.uni-salzburg.at/index.php?id=52&L=1 The University of Salzburg]
 
* [http://www.freepatentsonline.com/y2018/0065310.html Polymeric Materials and Articles Manufactured There From] by a team from [https://us.pg.com/ Procter and Gamble]
 
* [https://ieeexplore.ieee.org/abstract/document/8329484/?reload=true UV-curable Ferrite Paste for Additive Manufacturing of Power Magnetics] by a team from [http://vt.edu Virginia Tech]
 
* [https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.8b00580 Tailoring the Porosity and Microstructure of Printed Graphene Electrodes via Polymer Phase Inversion] by a team from [http://northwestern.edu Northwestern University]
 
  
==== Published in 2017 ====
+
== DPE, HME 2023 ==
  
* [https://static1.squarespace.com/static/59581b474c8b03b8a580b4ae/t/5a5c280bec212d764ffc3203/1515989014007/Bioink+Paper.pdf Injectable Nanocomposite Hydrogels for Cell Delivery and Bioprinting] by a team by a team from three disciplines of [http://www.tamu.edu/ Texas A&M University].
+
* [https://www.sciencedirect.com/science/article/abs/pii/S0939641123003119 Combination Techniques Towards Novel Drug Delivery Systems Manufacturing: 3D PCL Scaffolds Enriched With Tetracycline-loaded PVP Nanoparticles] by a team from [https://www.marmara.edu.tr/en Marmara University, Turkey]
* [https://www.researchgate.net/profile/Manik_Chandra_Biswas2/publication/317318891_Feasibility_of_Printing_3D_Bone_Models_for_Education_at_TUCVM/links/5931e797aca272fc55093f49/Feasibility-of-Printing-3D-Bone-Models-for-Education-at-TUCVM.pdf Feasibility of Printing 3D Bone Models for Education at TUCVM] at [https://www.researchgate.net/ ResearchGate]
+
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.202307297 Fully Recyclable Cured Polymers for Sustainable 3D Printing] by a team from the [https://www.shenkar.ac.il/en/departments/engineering-plastics-department Department of Polymer Materials Engineering, Pernick Faculty of Engineering, Shenkar College, Israel] and the [https://nano.huji.ac.il/ Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem]
* [http://ieeexplore.ieee.org/abstract/document/8095878/ Design and Additive Manufacturing of Multi-Permeability Magnetic Cores], by a team from [https://vt.edu Virginia Tech]
+
* [https://www.mdpi.com/2310-2861/9/9/766/pdf Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties] by a team from [https://www.ualberta.ca/agricultural-food-nutritional-science/index.html Department of Agricultural, Food and Nutritional Science, University of Alberta,], [https://quimica.uchile.cl/departamentos/ciencias-de-los-alimentos-y-tecnologia-quimica/presentacion Department of Food Science and Chemical Technology, Universidad de Chile,], and the Department of Food Engineering and the Department of Basic Sciences, [https://www.ubiobio.cl/w/ Universidad del Bío-Bío, Chile]
* [http://pubs.acs.org/doi/full/10.1021/acsami.7b07189 Combustion-Assisted Photonic Annealing of Printable Graphene Inks via Exothermic Binders], by a team from [http://www.northwestern.edu/ Northwestern Univeristy]
+
* [https://openaccess.marmara.edu.tr/entities/publication/d598e954-c38a-4ec5-ad40-a0f941710dc1  Production of Essential Oil Coated Polycapralactone Scaffold With Antibacterial Properties ] by an author from [https://www.marmara.edu.tr/en Marmara University, Istanbul]
* [http://onlinelibrary.wiley.com/doi/10.1002/jbm.a.36184/full In Vitro Evaluation of 3D Bbioprinted Tri-Polymer Network Scaffolds for Bone Tissue Regeneration], by a team from [https://uconn.edu The University of Connecticut]
+
* [https://arxiv.org/pdf/2309.01088.pdf Geometry, Mechanics and Actuation of Intrinsically Curved Folds] by a team from [http://www.eng.cam.ac.uk/ Department of Engineering, University of Cambridge, Cambridge, UK]
* [http://onlinelibrary.wiley.com/doi/10.1002/cctc.201700829/full Enabling Process Intensification via 3D Printing of Catalytic Structures] by a team from [http://uq.edu.au University of Queensland]
+
* [https://www.degruyter.com/document/doi/10.1515/polyeng-2023-0071/html Fabrication of Avian Eggshell Membrane Derived Dispersed Collagen Hydrogels for Potential Bone Regeneration] by a team from [https://home.iitd.ac.in/ Indian Institute of Technology, Delhi]
* [https://www.futuremedicine.com/doi/abs/10.2217/3dp-2017-0004?journalCode=3dp 3D Bioprinting for Musculoskeletal Applications] by Alexander Popov, Sara Malferrari, & Deepak M Kalaskar in [https://www.futuremedicine.com Future Medicine]
+
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/admt.202300144 Toward Fully Printed Soft Actuators: UV-Assisted Printing of Liquid Crystal Elastomers and Biphasic Liquid Metal Conductors] by a team from the [https://www.uc.pt/en/fctuc/deec/Department Institute of Systems and Robotics Department of Electrical and Computer Engineering University of Coimbra]
* [http://ieeexplore.ieee.org/abstract/document/7939416/ UV-assisted 3D-printing of Soft Ferrite Magnetic Components for Power Electronics Integration] by Dr. Y. Yan (and others), [http://vt.edu Virginia Tech]
+
* [https://www.sciencedirect.com/science/article/abs/pii/S0266353823000489#preview-section-snippets Controlled Directionality in 3D Printing of Graphite-Reinforced Polymer Composite with Enhanced Mechanical Properties] by a team from the [https://www.iitsystem.ac.in/ Indian Institute of Technology]'s [http://www.iitkgp.ac.in/ Kharagpur] and [https://iitgn.ac.in/ Gandhinagar] campuses, and the [https://www.innovationpark.psu.edu/park-news/latest-news/569-join-us-for-the-carbon-science-centre-of-excellence Carbon Science Centre of Excellence, Morgan Advanced Materials, Penn State University]
*[http://hyrel3d.net/papers/Alginate_Hydrogels_for_Bone_Tissue_Regeneration.pdf Alginate Hydrogels for Bone Tissue Regeneration] by Stephanie T. Bendtsen of [http://uconn.edu The University of Connecticut]
+
* [https://pubs.acs.org/doi/abs/10.1021/acs.langmuir.2c02936 3D Printed Hierarchical Porous Poly(ε-caprolactone) Scaffolds from Pickering High Internal Phase Emulsion Templating] by a team from the [https://textile.iitd.ac.in/ Department of Textile and Fibre Engineering, Indian Institute of Technology, Delhi]
*[http://iopscience.iop.org/article/10.1088/1758-5090/aa7077/meta Fabrication of Biomimetic Bone Grafts with Multi-Material 3D Printing] by Nicholas Sears et. al., of the [https://engineering.tamu.edu/biomedical Biomedical Engineering Department] of [http://www.tamu.edu/ Texas A&M University].
+
* [https://aip.scitation.org/doi/full/10.1063/5.0133995 Do we need perfect mixing between fuel and oxidizer to maximize the energy release rate of energetic nanocomposites?] by a team from the [https://www.cee.ucr.edu/ Department of Chemical and Environmental Engineering, University of California, Riverside] and the [https://me.stanford.edu/ Department of Mechanical Engineering, Stanford University]
*[http://hyrel3d.net/papers/Tuskegee_Eggshell.pdf Nanoengineered Eggshell–Silver Tailored Copolyester Polymer Blend Film with Antimicrobial Properties] by a team from [http://www.tuskegee.edu Tuskegee University]
 
*[http://hyrel3d.net/papers/Design_Meth_Additive_Mfg_Magnetic_Comp_YYan_2017.pdf Design Methodology and Materials for Additive Manufacturing of Magnetic Components] - PhD Thesis of Y. Yan, [http://vt.edu Virginia Tech]
 
  
==== Published in 2016 ====
+
[[#top|Top]]
  
*[https://pubs.acs.org/doi/pdf/10.1021/acsami.6b11643 High Performance, 3D-Printable Dielectric Nanocomposites for Millimeter Wave Devices] by a team from the [https://www.ll.mit.edu/ Lincoln Laboratory at the Massachusetts Institute of Technology (MIT)]
+
== DPE, HME 2022 ==
*[http://www.ieeeconfpublishing.org/cpir/UploadedFiles/Additive%20Manufacturing%20of%20Magnetic%20Components%20for%20Heterogeneous%20Integration.pdf Additive Manufacturing of Magnetic Components for Heterogeneous Integration] by Dr. Y. Yan (and others), [http://vt.edu Virginia Tech]
 
*[http://hyrel3d.net/papers/Sydney_Bioprinting_Presentation.pptx Bioprinting Defined Heterogeneous Cellular Microenvironments] from [http://sydney.edu.au/engineering/research/centres/biomaterials-tissue-engineering/ The Biomaterials and Tissue Engineering Research Unit] of the [http://web.aeromech.usyd.edu.au/index.php Aerospace, Mechanical and Mechatronic Engineering Department] of [http://sydney.edu.au The University of Sydney]
 
*[http://hyrel3d.net/papers/3D-4D_Printing_and_Stretchable_Conductive_Adhesives.pdf A Novel Approach to Integrating 3D/4D Printing and Stretchable Conductive Adhesive Technologies for High Frequency Packaging Applications] by a team from [http://www.gatech.edu/ Georgia Tech]
 
*[http://hyrel3d.net/papers/3D_Printed_Scaffolds_to_Repair_Large_Bone_Deficits.pdf Design and Fabrication of 3D Printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects] in [http://www.nature.com/index.html Nature.com's] [http://www.nature.com/srep/ Scientific Reports]
 
*[http://hyrel3d.net/papers/Eumlsion_Inks_for_3D_Printing.pdf Emulsion Inks for 3D Printing of High Porosity Materials] in the [http://www.frontiersin.org/10.3389/conf.FBIOE.2016.01.02721/2893/10th_World_Biomaterials_Congress/all_events/event_abstract Macromolecular Journals]
 
*[https://www.dst.defence.gov.au/sites/default/files/events/documents/WCSD%20Presentation.pdf 3D Printed Energetics] by the [https://www.dst.defence.gov.au/research-division/weapons-and-combat-systems-division Weapons and Combat Systems Division] of the [http://defence.gov.au Australian Department of Defense]
 
  
==== Published in 2015====
+
* [https://pubs.acs.org/doi/abs/10.1021/acsami.2c14815 3D Printing of Liquid Metal Embedded Elastomers for Soft Thermal and Electrical Materials] by a team from [https://www.cmu.edu/ Carnegie Mellon University]'s  [https://www.meche.engineering.cmu.edu/ Mechanical] and [https://www.cheme.engineering.cmu.edu/ Chemical] Engineering Departments; the [https://www.erg.cuhk.edu.hk/erg/MechanicalAndAutomationEngineering Department of Mechanical and Automation Engineering, Chinese University of Hong Kong], and the [https://me.snu.ac.kr/en Department of Mechanical Engineering, Seoul National University]
 +
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/aisy.202200280 Robotic Pick-and-Place Operations in Multifunctional Liquid Crystal Elastomers] by a team from [https://www.tue.nl/en/ Eindhoven University of Technology]'s [https://www.tue.nl/en/research/institutes/institute-for-complex-molecular-systems/ Institute for Complex Molecular Systems] and [https://www.tue.nl/en/our-university/departments/chemical-engineering-and-chemistry/the-department/ Department of Chemical Engineering and Chemistry], the [https://inma.unizar-csic.es/en/home/ Instituto de Nanociencia y Materiales de Aragón (INMA)Departamento de Física de la Materia CondensadaCSIC-Universidad de Zaragoza], the [https://www.ciber-bbn.es/en CIBER in Bioengineering, Biomaterials and Nanomedicine], and the [ SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University]
 +
* [https://asmedigitalcollection.asme.org/SMASIS/proceedings-abstract/SMASIS2022/86274/V001T05A006/1150813 Development of Embeddable Additive Manufacturing Microsensors for Structural Health Monitoring], by a team from [https://erau.edu/ Embry-Riddle Aeronautical University]
 +
* [https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=4693&context=etd Continuous, Non-Destructive Detection of Surface Bacterial Growth with Bioinspired Vascularized PolymersGrowth with Bioinspired Vascularized Polymers], submitted to the University of Maine in pursuit of a Master of Science in Biomedical Engineering
 +
* [https://www.chinesechemsoc.org/doi/pdf/10.31635/ccschem.022.202202362 A Novel Dynamic Polymer Synthesis via Chlorinated Solvent Quenched Depolymerization] by a team from [https://www.ornl.gov Oak Ridge National Laboratory]'s [https://www.ornl.gov/division/csd Chemical Services Division] and [https://www.ornl.gov/facility/cnms Center for Nanophase Materials Sciences]; [https://utk.edu/ University of Tennessee, Knoxville]'s [https://chem.utk.edu/ Department of Chemistry] and [https://cbe.utk.edu/ Department of Chemical and Biomolecular Engineering]; and [https://jiaowuchu.buct.edu.cn/en_jwc/mainm.htm Beijing University of Chemical Technology]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acsapm.2c00933 Alginate–Sodium Sulfate Decahydrate Phase Change Composite with Extended Stability] by a team from [https://www.ornl.gov/division/csd Chemical Sciences Division, Oak Ridge National Laboratory], [https://www.ornl.gov/division/buildings-and-transportation-science Building and Transportation Sciences Division, Oak Ridge National Laboratory], and the [https://chem.utk.edu/ Department of Chemistry, University of Tennessee, Knoxville]
 +
* [https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/62f67a4342ddf53f75b8d40c/original/continuous-non-destructive-detection-of-microorganism-growth-at-buried-interfaces-with-vascularized-polymers.pdf Continuous, Non-Destructive Detection of Microorganism Growth at Buried Interfaces with Vascularized Polymers] by a team from the [https://gsbse.umaine.edu/ Biomedical Science and Engineering, University of Maine], the [https://mems.duke.edu/ Department of Mechanical Engineering and Material Science, Duke University], and the [Pritzker School of Molecular Engineering, University of Chicago https://pme.uchicago.edu/]
 +
* [https://link.springer.com/article/10.1007/s00170-022-09815-8 Comparing the Cpabilities of Vibration-Assisted Printing (VAP) and Direct-Write Additive Manufacturing Techniques] by a team from [https://engineering.purdue.edu/Zucrow Purdue University] and [https://nps.edu/web/mae Naval Postgraduate School]
 +
*[https://journals.sagepub.com/doi/abs/10.1177/10996362221118329 Characterization of Micro-Sandwich Structures via Direct Ink Writing Epoxy Based Cores] by a team from various engineering departments at [https://tickle.utk.edu/ The University of Tennessee, Knoxville]
 +
* [https://www.sciencedirect.com/science/article/abs/pii/S0927775722013188#! Emulsion Templated Porous Funnel from Polypropylene Waste for Efficient Oil Separation and Spillage Management] by a team from the [https://textile.iitd.ac.in/ Department of Textile Technology, Indian Institute of Technology - Delhi]
 +
* [https://scholarworks.utep.edu/cgi/viewcontent.cgi?article=4536&context=open_etd Material Synthesis and Machine Learning for Additive ManufacturingManufacturing], a Master's Thesis submitted to [https://www.utep.edu/engineering/mechanical/index.html the Department of Aerospace and Mechanical Engineering, University of Texas at El Paso]
 +
* [https://scholarworks.utep.edu/cgi/viewcontent.cgi?article=4473&context=open_etd Material Synthesis and Additive Manufacturing of Ceramics], a Master's Thesis submitted to [https://www.utep.edu/engineering/mechanical/index.html the Department of Aerospace and Mechanical Engineering, University of Texas at El Paso]
 +
* [https://pure.tue.nl/ws/portalfiles/portal/197812781/20220330_Sol_hf.pdf Cholesteric Liquid Crystals in Additive Manufacturing], a doctoral dissertation submitted to the [https://www.tue.nl/en/research/research-groups/stimuli-responsive-functional-materials-devices/ Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e)]
 +
* [https://www.researchgate.net/publication/359651878_Development_of_Advanced_3D-Printed_Solid_Dosage_Pediatric_Formulations_for_HIV_Treatment Development of Advanced 3D-Printed Solid Dosage Pediatric Formulations for HIV Treatment] by a team from [https://www.tcd.ie/ Trinity College Dublin], [https://www.ucm.es/english Complutense University of Madrid], and [https://www.kau.edu.sa/home_english.aspx King Abdulaziz University]
 +
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/jbm.a.37363 An Additive Manufacturing-based 3D Printed Poly ɛ-CaproLactone (PCL) / Alginate Sulfate / Cxtracellular Matrix Construct for Nasal Cartilage Regeneration], by a team from [https://www.tamiu.edu/ Texas A&M International University], [https://iums.ac.ir/en Iran University of Medical Sciences], and the [https://ut.ac.ir/en University of Tehran]
  
*[http://c.ymcdn.com/sites/www.surfaces.org/resource/collection/4423FA75-D640-4955-A412-240A38EF1FAA/2015_Elizabeth_Cosgriffpdf.pdf 3D Printing of High Porosity, Biodegradable Foams with Cure on Dispense] - Presentation by Elizabeth Cosgriff-Hernández of [https://engineering.tamu.edu/biomedical Department of Biomedical Engineering], [http://www.tamu.edu Texas A&M University]
+
[[#top|Top]]
*[https://www.biomaterials.org/sites/default/files/docs/2015/graduate_abstracts.pdf Graduate Abstract: Dynamic increase in matrix stiffness promotes invasive tumor phenotype in vivo] from multiple organizations, at [https://www.biomaterials.org BioMaterials.org]
 
*[https://www.mpif.org/cpmt/studentprojects/Scholar_work_2015-02.pdf Die-Less MIM-style Additive Manufacturing with Controlled Porosity: A Proof of Concept] by the [http://www.lehigh.edu/matsci/ Department of Materials Science and Engineering] of [http://www1.lehigh.edu/home Lehigh University]
 
*[http://pubs.acs.org/doi/abs/10.1021/nn507488s Bioactive Nanoengineered Hydrogels for Bone Tissue Engineering: A Growth-Factor-Free Approach] in [http://www.acs.org/content/acs/en.html The American Chemical Society's] [http://pubs.acs.org/journal/ancac3 ACS Nano]
 
  
==== Published in 2014 ====
+
== DPE, HME 2021 ==
  
*[http://www.anzors.org.au/pdfs/2014-proceedings.pdf Development of 3D printed Ceramic scaffolds for Treatment of Segmental Bone Defects] from [http://sydney.edu.au/engineering/research/centres/biomaterials-tissue-engineering/ The Biomaterials and Tissue Engineering Research Unit] of the [http://web.aeromech.usyd.edu.au/index.php Aerospace, Mechanical and Mechatronic Engineering Department] of [http://sydney.edu.au The University of Sydney]
+
*[https://www.pharmaexcipients.com/wp-content/uploads/2021/11/Effects-of-crosslinking-on-the-physical-solid-state-and-dissolution-properties-of-3D-printed-theophylline-tablets.pdf Effects of Crosslinking on the Physical Solid-State and Dissolution Properties of 3D-printed Theophylline Tablets] by a team from the [https://www.farmaatsia.ut.ee/en Institute of Pharmacy] and the [https://www.biomeditsiin.ut.ee/en Institute of Biomedicine and Translational Medicine] of the [https://www.ut.ee/en University of Tartu] and from the [https://researchportal.helsinki.fi/en/organisations/division-of-pharmaceutical-chemistry-and-technology Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki]
 +
*[https://www.researchgate.net/profile/Dolores-Serrano/publication/354921250_Understanding_Direct_Powder_Extrusion_for_Fabrication_of_3D_Printed_Personalised_Medicines_A_Case_Study_for_Nifedipine_Minitablets/links/615436b22b34872782f8c993/Understanding-Direct-Powder-Extrusion-for-Fabrication-of-3D-Printed-Personalised-Medicines-A-Case-Study-for-Nifedipine-Minitablets.pdf Understanding Direct Powder Extrusion for Fabrication of 3D Printed Personalised Medicines: A Case Study for Nifedipine Minitablets], a study by a team from the [https://www.ucm.es/pharmacy/welcome Department of Pharmaceutics and Food Science, Facultad de Farmacia, Universidad Complutense de Madrid,]and the [https://www.port.ac.uk/about-us/structure-and-governance/organisational-structure/our-academic-structure/faculty-of-science-and-health/school-of-pharmacy-and-biomedical-sciences Biomaterials, Bio-Engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth]
 +
*[https://dr.ntu.edu.sg/bitstream/10356/152117/3/Science%20Journals%20%E2%80%94%20AAAS.pdf Printable Elastomeric Electrodes with Sweat‑Enhanced Conductivity for Wearables] by a team primarily from [https://www.ntu.edu.sg/ Nanyang Technological University, Singapore]
 +
*[https://www.proquest.com/openview/c0ab8d5f14ed448695515d5418472170/1?pq-origsite=gscholar&cbl=18750&diss=y Fabrication and Testing of Advanced Composites for Extreme Environments], a Master's dissertation submitted to the [https://engineering.tamu.edu/mechanical/index.html Mechanical Engineering Department of Texas A&M University]
 +
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.202100477 Wound Healing: From Passive to Smart Dressings] by a team from [https://aut.ac.ir/content/189/Biomedical-Engineering Department of Biomedical Engineering, Amirkabir University of Technology, Tehra] and [https://di.uq.edu.au/ UQ Diamantina Institute, Translational Research Institute, The University of Queensland]
 +
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.202100277 3D Printing of Polyvinylidene Fluoride Based Piezoelectric Nanocomposites: An Overview] by a tea, from [https://www.eskisehir.edu.tr/en Eskişehir Technical University, Turkey]
 +
* [https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9053163&fileOId=9053168 3D Printing Compositesfrom Raw Materials], a Master Thesis submitted to [https://www.lunduniversity.lu.se/home Lund University]
 +
* [https://arxiv.org/ftp/arxiv/papers/2106/2106.02165.pdf Soft Elasticity Optimises Dissipation in 3D-Printed Liquid Crystal Elastomers] by a team from [https://engineering.ucdenver.edu/departments/mechanical-engineering the Department of Mechanical Engineering, University of Colorado, Denver], [https://eps.leeds.ac.uk/physics School of Physics and Astronomy, University of Leeds], [https://www.sandia.gov Materials and Failure Modeling Department, Sandia National Laboratories], and [https://www.impressio.tech Impressio, Inc.]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acs.biomac.1c00105 3D-Printed Enzyme-Embedded Plastics] by a team from [https://www.scionresearch.com/ Scion], a Crown Research Institute in New Zealand
  
== [[Reservoir_Heads|Heated Reservoir Printing]] ==
+
[[#top|Top]]
  
==== Published in 2020 ====
+
== DPE, HME 2020 ==
  
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202002929 Controlled Assembly of Liquid Metal Inclusions as a General Approach for Multifunctional Composites] by a team from [https://www.meche.engineering.cmu.edu Department of Mechanical Engineering, Carnegie Mellon University]
+
* [https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=10152&context=etd Study of Recyclable and Repairable Dynamic Covalent Polymers for Sustainable 3D Printing Development for Sustainable 3D Printing Development], a thesis for a PhD in Mechanical and Materials Engineering submitted to [https://www.eng.uwo.ca/mechanical/graduate/ The University of Western Ontario]
 +
* [https://www.youtube.com/watch?v=dKa1PfS6HrU Toward Multifunctional Liquid Metal Composites], a video by a team from the [https://www.meche.engineering.cmu.edu Department of Mechanical Engineering, Carnegie Mellon University]
 +
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202002929 Controlled Assembly of Liquid Metal Inclusions as a General Approach for Multifunctional Composites] by a team from the [https://www.meche.engineering.cmu.edu Department of Mechanical Engineering, Carnegie Mellon University]
 
* [https://www.sciencedirect.com/science/article/pii/S2666821120300247#! Syngas to Higher Alcohols Synthesis over 3D Printed KMoCo/ZSM5 Monolith] by a team from the [https://aibn.uq.edu.au/ Australian Institute for Bioengineering and Nanotechnology (AIBN) of The University of Queensland]
 
* [https://www.sciencedirect.com/science/article/pii/S2666821120300247#! Syngas to Higher Alcohols Synthesis over 3D Printed KMoCo/ZSM5 Monolith] by a team from the [https://aibn.uq.edu.au/ Australian Institute for Bioengineering and Nanotechnology (AIBN) of The University of Queensland]
 
* [https://pubs.acs.org/doi/abs/10.1021/acsabm.0c00572 Extrusion 3D Printing of Porous Silicone Architectures for Engineering Human Cardiomyocyte-Infused Patches Mimicking Adult Heart Stiffness] by a team from the [https://mme.fiu.edu/ Department of Mechanical and Materials Engineering of Florida International University]
 
* [https://pubs.acs.org/doi/abs/10.1021/acsabm.0c00572 Extrusion 3D Printing of Porous Silicone Architectures for Engineering Human Cardiomyocyte-Infused Patches Mimicking Adult Heart Stiffness] by a team from the [https://mme.fiu.edu/ Department of Mechanical and Materials Engineering of Florida International University]
Line 202: Line 292:
 
* [https://www.sciencedirect.com/science/article/pii/S1751616119315656 Mechanical Properties of Nanocomposite Biomaterials improved by extrusion during Direct Ink Writing] by a team from the Composite Biomaterial Systems Laboratory of the [https://uwaterloo.ca/systems-design-engineering/ Systems Design Engineering School at the University of Waterloo, Canada]
 
* [https://www.sciencedirect.com/science/article/pii/S1751616119315656 Mechanical Properties of Nanocomposite Biomaterials improved by extrusion during Direct Ink Writing] by a team from the Composite Biomaterial Systems Laboratory of the [https://uwaterloo.ca/systems-design-engineering/ Systems Design Engineering School at the University of Waterloo, Canada]
  
==== Published in 2019 ====
+
[[#top|Top]]
 +
 
 +
== DPE, HME 2019 ==
  
 
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adbi.201900216 Vascularized Polymers Spatially Control Bacterial Cells on Surfaces] by a team from [https://umaine.edu/chb/ the Department of Chemical and Biomedical Engineering, University of Maine]
 
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adbi.201900216 Vascularized Polymers Spatially Control Bacterial Cells on Surfaces] by a team from [https://umaine.edu/chb/ the Department of Chemical and Biomedical Engineering, University of Maine]
Line 218: Line 310:
 
* [https://patents.google.com/patent/US20190022928A1/en Additive Processing of Fluoropolymers], a patent application by a team from [https://www.3m.com/ 3M]
 
* [https://patents.google.com/patent/US20190022928A1/en Additive Processing of Fluoropolymers], a patent application by a team from [https://www.3m.com/ 3M]
  
==== Published in 2018 ====
+
[[#top|Top]]
 +
 
 +
== DPE, HME 2018 ==
  
* [https://www.researchgate.net/publication/329216477_Molecularly-Engineered_4D-Printed_Liquid_Crystal_Elastomer_Actuators Molecularly-Engineered, 4D-Printed Liquid Crystal Elastomer Actuators] by a team from the [https://be.utdallas.edu/ Bioengineering Department of University of Texas, Dallas]
 
 
* [https://www.researchgate.net/profile/David_Ballard6/publication/329000422_3D_printing_of_surgical_hernia_meshes_impregnated_with_contrast_agents_in_vitro_proof_of_concept_with_imaging_characteristics_on_computed_tomography/links/5bef0e1892851c6b27c495d2/3D-printing-of-surgical-hernia-meshes-impregnated-with-contrast-agents-in-vitro-proof-of-concept-with-imaging-characteristics-on-computed-tomography.pdf 3D Printing of Surgical Hernia Meshes Impregnated with Contrast Agents: In Vitro Proof of Concept with Imaging Characteristics on Computed Tomography] by a team from [https://wustl.edu/ Washington University in St. Louis]
 
* [https://www.researchgate.net/profile/David_Ballard6/publication/329000422_3D_printing_of_surgical_hernia_meshes_impregnated_with_contrast_agents_in_vitro_proof_of_concept_with_imaging_characteristics_on_computed_tomography/links/5bef0e1892851c6b27c495d2/3D-printing-of-surgical-hernia-meshes-impregnated-with-contrast-agents-in-vitro-proof-of-concept-with-imaging-characteristics-on-computed-tomography.pdf 3D Printing of Surgical Hernia Meshes Impregnated with Contrast Agents: In Vitro Proof of Concept with Imaging Characteristics on Computed Tomography] by a team from [https://wustl.edu/ Washington University in St. Louis]
 
* [https://www.sciencedirect.com/science/article/pii/S2405886618300113 Composites of Fatty Acids and Ceramic Powders are Versatile Biomaterials for Personalized Implants and Controlled Release of Pharmaceuticals] by a team from [https://www.sdu.dk/en/ The University of Southern Denmark]
 
* [https://www.sciencedirect.com/science/article/pii/S2405886618300113 Composites of Fatty Acids and Ceramic Powders are Versatile Biomaterials for Personalized Implants and Controlled Release of Pharmaceuticals] by a team from [https://www.sdu.dk/en/ The University of Southern Denmark]
Line 226: Line 319:
 
* [http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.7b02540 Nanoengineered Colloidal Inks for 3D Bioprinting] in [http://www.acs.org/content/acs/en.html The American Chemical Society's] [http://pubs.acs.org/journal/langd5 Langmuir]
 
* [http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.7b02540 Nanoengineered Colloidal Inks for 3D Bioprinting] in [http://www.acs.org/content/acs/en.html The American Chemical Society's] [http://pubs.acs.org/journal/langd5 Langmuir]
  
==== Published in 2017 ====
+
[[#top|Top]]
 +
 
 +
== DPE, HME 2017 ==
  
 
* [http://pubs.acs.org/doi/abs/10.1021/acsami.7b13602 Shear-Thinning and Thermo-Reversible Nanoengineered Inks for 3D Bioprinting] in the [http://www.acs.org/content/acs/en.html American Chemical Society's] [http://pubs.acs.org/toc/aamick/current Applied Materials & Interfaces Journal]
 
* [http://pubs.acs.org/doi/abs/10.1021/acsami.7b13602 Shear-Thinning and Thermo-Reversible Nanoengineered Inks for 3D Bioprinting] in the [http://www.acs.org/content/acs/en.html American Chemical Society's] [http://pubs.acs.org/toc/aamick/current Applied Materials & Interfaces Journal]
*[http://pubs.acs.org/doi/abs/10.1021/acsami.7b11851 4D Printing of Liquid Crystal Elastomers] by a team from the [https://be.utdallas.edu/ Bioengineering Department of the University of Texas, Dallas]
 
 
*[http://scholar.google.com/scholar_url?url=http://onlinelibrary.wiley.com/doi/10.1002/app.45083/full&hl=en&sa=X&scisig=AAGBfm08tdsc-a6hdNeaw1xB7JInXsZCeg&nossl=1&oi=scholaralrt Influence of Shear Thinning and Material Flow on Robotic Dispensing of PEG] in [http://www.acs.org/content/acs/en.html The American Chemical Society's] [http://pubs.acs.org/journal/ancac3 ACS Nano]
 
*[http://scholar.google.com/scholar_url?url=http://onlinelibrary.wiley.com/doi/10.1002/app.45083/full&hl=en&sa=X&scisig=AAGBfm08tdsc-a6hdNeaw1xB7JInXsZCeg&nossl=1&oi=scholaralrt Influence of Shear Thinning and Material Flow on Robotic Dispensing of PEG] in [http://www.acs.org/content/acs/en.html The American Chemical Society's] [http://pubs.acs.org/journal/ancac3 ACS Nano]
  
== [[Filament_Heads|Filament Printing]] ==
+
[[#top|Top]]
  
==== Published in 2020 ====
+
== '''[[Filament_Heads|Filament Printing]]''' ==
  
 +
Also known as '''FFF''' (Fused Filament Fabrication) or '''FDM''' (Fused Deposition Modeling).
 +
 +
== FDM/FFF, 2025 ==
 +
 +
* [https://www.sciencedirect.com/science/article/pii/S2213846325000859 An Experimental Investigation of Hybrid Fused Filament Fabrication With in-process Machining] by a team from the [https://www.uml.edu/ University of Massachusetts, Lowell]
 +
* [https://link.springer.com/article/10.1007/s40964-025-01277-0 Fused Filament Fabrication of Thermoplastic Polyurethane Composites With Microencapsulated Phase-change Material] by a team from [https://research-hub.nrel.gov/en/organisations/building-technologies-and-science-center Building Technologies and Science Center, National Renewable Energy Laboratory] and [https://daytonabeach.erau.edu/college-engineering/mechanical Department of Mechanical Engineering, Embry-Riddle Aeronautical University]
 +
* [https://link.springer.com/article/10.1007/s11665-025-11785-3 Evaluating Mechanical Integrity of 3D-Printed PLA and ABS by Varying Process Parameters] by a team from [https://www.tuskegee.edu/programs-courses/colleges-schools/coe/materials-science-and-engineering-home Department of Materials Science and Engineering, Tuskegee University], [https://www.tuskegee.edu/programs-courses/colleges-schools/coe/aerospace-science-engineering Department of Aerospace Engineering, Tuskegee University] and [https://www.astu.edu.et/Colleges/CoMCME/departments/mechanical-engineering Department of Mechanical Engineering, Adama Science & Technology University, Ethiopia]
 +
* [https://link.springer.com/article/10.1007/s00170-025-16190-7 Qualitative and Quantitative Analysis of FFF- Printed Porous Peek: Effects of Key Process Parameters] by a team from [https://cimav.edu.mx/investigacion/subsede-monterrey/ CIMAV-Subsede Monterrey] and other organizations.
 +
*[https://www.proquest.com/openview/7554a060ea9c651ff1123a849c9a89ca/1?pq-origsite=gscholar&cbl=18750&diss=y A Study on 3D Printing Process to Optimize the Mechanical and Thermal Behavior of PLA, ABS, and Carbon Fiber/ PEEK Composite], a thesis submitted to the [https://catalog.tuskegee.edu/preview_entity.php?catoid=15&ent_oid=800&returnto=853 Department of Materials Science and Engineering, Tuskegee University]
 +
* [https://www.sciencedirect.com/science/article/abs/pii/S0927775722013188 Emulsion Templated Porous Funnel From Polypropylene Waste for Efficient Oil Separation and Spillage Management] by a team from [https://home.iitd.ac.in IIT Delhi]
 +
* [https://books.google.com/books?hl=en&lr=lang_en&id=EBVeEQAAQBAJ&oi=fnd&pg=PA1&dq=hyrel&ots=qhSRkfhxUh&sig=oVbBfBdB8zksgRnvjMoCndWpsms#v=onepage&q&f=false Additive Manufacturing of Stainless Steel 316L by Fused Deposition Modeling] by a team from [https://www.iitbhu.ac.in/ Indian Institute of Technology (BHU) Varanasi]
 +
* [https://www.sciencedirect.com/science/article/abs/pii/S1526612525005754 Dry Sliding Wear Behaviour of 3D Printed Polyetheretherketone With Varying Layer Thickness] by a team from [https://mech.iitm.ac.in/ Department of Mechanical Engineering, Indian Institute of Technology Madras]
 +
* [https://www.mdpi.com/2504-477X/9/5/208 Effect of Printing Parameters on Mechanical Properties and Warpage of 3D-Printed PEEK/CF-PEEK Composites Using Multi-Objective Optimization Technique] by a team from [http://www.sit.ac.in/html/department.php?deptid=12 Department of Mechanical Engineering, Siddaganga Institute of Technology, Karnataka, India] and [https://bmsit.ac.in/dept/mechanical-engineering Department of Mechanical Engineering, BMS Institute of Technology and Management, Karnataka, India]
 +
* [https://pubs.acs.org/doi/full/10.1021/acsami.4c22625 Observations and Origin of Interfacial Heterogeneities in High-Performance Engineering Thermoplastics During Additive Manufacturing via Synchrotron X-ray Diffraction] by a team from [https://www.afrl.af.mil/RX/ Materials and Manufacturing Directorate, Air Force Research Laboratory], [https://bluehalo.com/ues-is-now-bluehalo/ UES, Dayton, Ohio], and [https://www.chess.cornell.edu Cornell High Energy Synchrotron Source, Cornell University]
 +
 +
[[#top|Top]]
 +
 +
== FDM/FFF, 2024 ==
 +
 +
* [https://www.researchgate.net/profile/Thomas-Profitiliotis/publication/387318690_Design_optimization_and_finite_element_analysis_of_3D_printed_drug_delivery_systems/links/6768939bc1b0135465eee376/Design-optimization-and-finite-element-analysis-of-3D-printed-drug-delivery-systems.pdf Design Optimization and Finite Element Analysis of 3D Printed Drug Delivery Systems] by a team from the [https://www.ihu.gr/ucips/digital-manufacturing-and-materials-characterization-laboratory-dmmc-lab Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University]
 +
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202419148 Development of a Novel, All‐Aromatic High Tensile Modulus Liquid Crystalline Polyimide for Fused Filament Fabrication Applications] by a team from [https://www.afrl.af.mil Air Force Research Laboratory], [https://engineering.tamu.edu/materials/index.html Materials Science and Engineering Department of Texas A&M University], and [https://bluehalo.com BlueHalo LLC]
 +
* [https://www.emerald.com/insight/content/doi/10.1108/rpj-05-2024-0188/full/html Mechanical and Surface Characterisation of Additively Manufactured Polyetheretherketone for the Tribo Test] by a team from the [https://mech.iitm.ac.in/ Department of Mechanical Engineering, Indian Institute of Technology Madras]
 +
* [https://www.sciencedirect.com/science/article/abs/pii/S1526612524010764 Effect of the Infill Percentage of 3D Printed Polyetheretherketone Under the Dry Sliding Condition] by a team from [https://mech.iitm.ac.in/ Mechanical Engineering Department, Indian Institute of Technology Madras]
 +
* [https://pubs.rsc.org/en/content/articlepdf/2024/qm/d4qm00520a Fine-tuning of Core–shell 1D Nanoparticles for Thermally Conductive, Yet Electrically Insulating, 3D-printable Polymer Nanocomposites] by a team from [https://liten.cea.fr/cea-tech/liten/english/Pages/Welcome.aspx CEA Liten, France]
 +
* [https://link.springer.com/article/10.1557/s43577-024-00756-z Novel Production Strategy of Drug-encapsulated Biodegradable Scaffolds for Remediation of Hidradenitis Suppurativa] by a team from [https://www.gtu.edu.tr/en/kategori/2203/3/display.aspx Institute of Biotechnology, Gebze Technical University, Turkey], [https://bme.unc.edu/ Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill], and multiple departments of both [https://www.uml.edu/ University of Massachusetts, Lowell] and [https://www.marmara.edu.tr/en Marmara University, Turkey]
 +
* [https://link.springer.com/article/10.1007/s42247-024-00711-3 3D-printed Polylactic Acid (Pla)/polymethyl Silsesquioxane (Pmsq)-based Scaffolds Coated With Vitamin E Microparticles for the Application of Wound Healing] by a team from [https://www.marmara.edu.tr/en Marmara University, Turkey], [https://uskudar.edu.tr/en Üsküdar University, Turkey], [https://www.tuseb.gov.tr/en Health Institutes of Türkiye (TUSEB), Turkey], [https://www.iuc.edu.tr/en/ Istanbul University-Cerrahpasa, Turkey], and [https://gelisim.edu.tr/en/gelisim-homepage Istanbul Gelisim University, Turkey]
 +
* [https://iopscience.iop.org/article/10.1088/2631-8695/ad2e51/meta Programmable Cell Unit Arrangement of 3D Printing Mechanical Metamaterial Undergoing Tailorable Local Instability] by a team from [http://www.hrbust.edu.cn  Harbin University of Science and Technology]
 +
 +
[[#top|Top]]
 +
 +
== FDM/FFF, 2023 ==
 +
 +
* [https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pol.20230632 Highly Loaded Carbon Fiber Filaments for 3d-printed Composites] by a team from the [https://www.uga.edu/ University of Georgia] and [https://www.asu.edu/ Arizona State University ]
 +
* [https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pol.20230632 Highly loaded carbon fiber filaments for 3D-printed composites] by a team from the [https://www.engineering.uga.edu/schools/ecam/undergraduate School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia] and the [https://msn.engineering.asu.edu/ Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University]
 +
* [https://www.sciencedirect.com/science/article/abs/pii/S235243162300158X 3D Printable Spatial Fractal Structures Undergoing Auxetic Elasticity] by a team from [http://en.hit.edu.cn/ Harbin Institute of Technology], [https://www.ntu.edu.sg/ Nanyang Technological University], [https://www.cityu.edu.hk/ City University of Hong Kong], and [https://www.northumbria.ac.uk/ Northumbria University]
 +
* [https://pubs.aip.org/aip/jap/article-abstract/134/19/194105/2922082/The-effect-of-porosity-on-flexoelectricity-in-3D The Effect of Porosity on Flexoelectricity in 3d Printed Aluminum/polyvinylidene Fluoride Composite] by a team from [https://www.purdue.edu/ Purdue University]
 +
* [https://www.sciencedirect.com/science/article/abs/pii/S2214785323047715 Effect of Input Variables on the Mechanical Properties of Additively Manufactured PEEK Thermoplastics] by a team from [https://www.etsmtl.ca/en/ets/governance/deans-and-departments/mechanical-engineering-department Department of Mechanical Engineering, École de Technologie Supérieure, Montréal], [https://ica.cnrs.fr/the-institute/ Institut Clément Ader, UMR CNRS 5312, University of Toulouse], and [https://oraprdnt.uqtr.uquebec.ca/pls/public/gscw031?owa_no_site=4724 Department of Mechanical Engineering, Innovations Institute in Ecomaterials, Ecoproducts and Ecoenergy (I2E3), Université du Québec à Trois-Rivières]
 +
* [https://ieeexplore.ieee.org/abstract/document/10236995 A Novel Feature Representation Method Based on Similarity Between Statistical Distributions of Acoustic Emission Waveforms] by a team from [https://jwc.shmtu.edu.cn/en/8563/list.htm College of Logistics Engineering, Shanghai Maritime University, Shanghai, China] and [http://sklofp.zju.edu.cn/sklen/ College of Mechanical Engineering, State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou, China]
 +
* [https://vtechworks.lib.vt.edu/bitstream/handle/10919/115657/Chung_J_D_2023.pdf?sequence=1&isAllowed=y Process Monitoring and Control of Advanced Manufacturing based on Physics-Assisted Machine Learning], a dissertation submitted to the [https://www.ise.vt.edu/ Industrial and Systems Engineering department of Virginia Tech]
 +
* [https://iopscience.iop.org/article/10.1088/1361-665X/acdcd7/meta Multimodal Origami Shape Memory Metamaterials Undergoing Compression-twist Coupling] by a team from [http://en.hit.edu.cn/ Harbin Institute of Technology, China], [https://www.ntu.edu.sg/mae School of Mechanical and Aerospace Engineering, Nanyang Technological University], and [https://www.northumbria.ac.uk/ Northumbria University, UK]
 +
* [https://link.springer.com/article/10.1007/s10845-023-02141-0 Process Parameter Optimization for Reproducible Fabrication of Layer Porosity Quality of 3D-Printed Tissue Scaffold] by a team from several departments at [https://www.vt.edu/ Virginia Tech]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acsami.3c01307 Fundamentals of Crystalline Evolution and Properties of Carbon Nanotube-Reinforced Polyether Ether Ketone Nanocomposites in Fused Filament Fabrication] by a team from several departments at [https://www.tamu.edu Texas A&M University]
 +
* [https://www.osti.gov/servlets/purl/1960414 Printed Planar Microwave Connector with Multiple Signal Lines] by a team from [https://www.uml.edu/engineering/electrical-computer/ Electrical & Computer Engineering, University of Massachusetts, Lowell]
 +
* [https://www.researchgate.net/profile/Aljawharah-Alsharif/publication/364062631_Structured_3D_Printed_Dry_ECG_Electrodes_Using_Copper_Based_Filament/links/640f739166f8522c38a04270/Structured-3D-Printed-Dry-ECG-Electrodes-Using-Copper-Based-Filament.pdf Structured 3D Printed Dry ECG Electrodes Using Copper Based Filament] by a team from the [https://cemse.kaust.edu.sa/org/cemse Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)]
 +
* [https://onlinelibrary.wiley.com/doi/full/10.1002/admt.202201677 3D Printed Dry Electrodes for Electrophysiological Signal Monitoring: A Review] by a team from [https://www.kaust.edu.sa/en King Abdullah University of Science and Technology (KAUST)]
 +
 +
[[#top|Top]]
 +
 +
== FDM/FFF, 2022 ==
 +
 +
* [https://www.tandfonline.com/doi/abs/10.1080/2374068X.2023.2226919 A Comparison Between Large-format 3d Printing and Conventional Fused Filament Fabrication] by a team from [https://issuu.com/uaomercadeo/docs/international_brochure Universidad Autónoma de Occidente, Columbia]
 +
* [https://arxiv.org/pdf/2210.17274.pdf Imbalanced Data Classification via Generative Adversarial Network with Application to Anomaly Detection in Additive Manufacturing Process] by a team from the [https://www.ise.vt.edu/ Grado Department of Industrial and Systems Engineering, Virginia Tech] and the [https://mie.njit.edu/ Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology]
 +
* [https://arxiv.org/ftp/arxiv/papers/2210/2210.17272.pdf Reinforcement Learning-based Defect Mitigation for Quality Assurance of Additive Manufacturing] by a team from the [https://www.ise.vt.edu/ Grado Department of Industrial and Systems Engineering, Virginia Tech] and the [https://mie.njit.edu/ Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology]
 +
* [https://books.google.com/books?hl=en&lr=lang_en&id=5XeGEAAAQBAJ&oi=fnd&pg=PA225&dq=hyrel&ots=z5RCHfPoi-&sig=QZbo_KqifYORnJ4Ujgr6rZ3GSc4#v=onepage&q&f=false Fabrication of Polycarbonate Filaments Infused with Carbon from Coconut Shell Powder for 3D Printing Applications] by a team from [https://www.tuskegee.edu/programs-courses/colleges-schools/coe/materials-science-and-engineering-home Tuskegee University's Department of Materials Science and Engineering (MSE)]
 +
* [https://vtechworks.lib.vt.edu/bitstream/handle/10919/111434/Law_A_D_2022.pdf?sequence=1 Smart Quality Assurance System for Additive Manufacturing using Data-driven based Parameter-Signature-Quality Framework], a dissertation submitted to [https://vt.edu/academics/majors/industrial-and-systems-engineering.html Virginia Tech's Industrial and Systems Engineering department]
 +
* [https://iopscience.iop.org/article/10.1088/1361-665X/ac775e/meta Tunable Hyperbolic Out-Of-Plane Deformation of 3D-Printed Auxetic PLA Shape Memory Arrays] by a team from [http://en.hit.edu.cn/ the Harbin Institute of Technology, China] and [https://www.ntu.edu.sg/ Nanyang Technological University, Singapore]
 +
* [https://www.science.org/doi/full/10.1126/sciadv.abn6006 Closed-loop Additive Manufacturing of Upcycled Commodity Plastic through Dynamic Cross-linking] by a team from the [https://www.ornl.gov/division/csd Chemical Sciences Division] and [https://www.ornl.gov/division/mstd Materials Sciences and Technology Division] of [https://www.ornl.gov/ Oak Ridge National Laboratory] and the [https://bredesencenter.utk.edu/ Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville]
 +
* [https://www.researchgate.net/publication/357135453_Effective_reinforcement_of_engineered_sustainable_biochar_carbon_for_3D_printed_polypropylene_biocomposites Effective Reinforcement of Engineered Sustainable Biochar carbon for 3D Printed Polypropylene Biocomposites] by a team from [https://www.tuskegee.edu Tuskegee Univeristy]
 +
* [https://www.sciencedirect.com/science/article/abs/pii/S2214860422001695 Nonparametric Bayesian Framework for Material and Process Optimization with Nanocomposite Fused Filament Fabrication] by a team from the departments of [https://www.eng.auburn.edu/insy/ Industrial and Systems Engineering] and [https://www.eng.auburn.edu/chen/ Chemical Engineering] of [https://auburn.edu/ Auburn University]
 +
* [https://www.sciencedirect.com/science/article/abs/pii/S0378517322002174 Paliperidone Palmitate as Model of Heat-Sensitive Drug for Long-Acting 3D Printing Application] by a team from the [https://cvchercheurs.ulb.ac.be/Site/unite/ULB396UK.php Laboratory of Pharmaceutics and Biopharmaceutics] and the [https://dynamics.ulb.be/ Laboratory of Polymer and Soft Matter Dynamics] of the [https://www.ulb.be/en/ulb-homepage Université libre de Bruxelles] and the [https://www.smpc.be/ Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons]
 +
* [https://www.sciencedirect.com/science/article/abs/pii/S2589152920301496 Effect of infill on resulting mechanical properties of additive manufactured bioresorbable polymers for medical devices] by a team from [https://www.poly-med.com/ Poly-Med, Inc.] and [https://www.clemson.edu/ Clemson University]
 +
* [http://www.ijmerr.com/uploadfile/2022/0105/20220105041437730.pdf Surface Design of 3D-printed PEEK by Controlling Slicing Parameters] in the [http://www.ijmerr.com/ International Journal of Mechanical Engineering and Robotics Research]
 +
 +
[[#top|Top]]
 +
 +
== FDM/FFF, 2021 ==
 +
 +
* [https://www.sciencedirect.com/science/article/pii/S2666682021001134 Effective Reinforcement of Engineered Sustainable Biochar Carbon for 3D Printed Polypropylene Biocomposites] from a team from [https://www.tuskegee.edu/ Tuskegee University]
 +
* [https://journals.sagepub.com/doi/abs/10.1177/00219983211044748 Fabrication and Characterization of Polycarbonate-Silica Filaments for 3D Printing Applications] by a team from [https://www.tuskegee.edu/ Tuskegee University]
 +
* [https://iopscience.iop.org/article/10.1088/1361-665X/ac1eac/meta Sequentially Tunable Buckling in 3D Printing Auxetic Metamaterial Undergoing Twofold Viscoelastic Resonances], by a team from [http://en.hit.edu.cn/ Harbin Institute of Technology, China], [https://en.nwpu.edu.cn/ Northwestern Polytechnical University, China], and [https://www.ntu.edu.sg/mae School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore]
 +
* [https://www.proquest.com/openview/57d5f52782d78880b7209659a750c97a/1?pq-origsite=gscholar&cbl=18750&diss=y Synthesis and Characterization of Functiona Materials for 3D Printed Composites], a Master's thesis submitted to the [https://engineering.tamu.edu/mechanical/index.html Mechanical Engineering Department of Texas A&M University]
 +
* [https://link.springer.com/article/10.1007/s11837-021-04647-5 Novel Architected Material for Cardiac Patches] by a team from the [https://engineering.utsa.edu/mechanical/ Department of Mechanical Engineering, University of Texas at San Antonio]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acsanm.1c00365 Boron Nitride Nanotubes for Heat Dissipation in Polycaprolactone Composite] by a team from [https://chem.duke.edu/ Department of Chemistry, Duke University] and [https://www.univ-grenoble-alpes.fr/ Université Grenoble Alpes]
 +
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202005743 3D Printing of Supramolecular Polymer Hydrogels with Hierarchical Structure] by a team from Northwestern University's [https://www.tgs.northwestern.edu/admission/academic-programs/explore-programs/materials-science-and-engineering.html Department of Materials Science and Engineering] and [https://sqi.northwestern.edu/ Simpson Querrey Institute] and the Soft Materials Branch of the [https://www.afrl.af.mil/RX/ Materials and Manufacturing Directorate, Air Force Research Laboratory]
 +
 +
[[#top|Top]]
 +
 +
== FDM/FFF, 2020 ==
 +
 +
* [https://smartech.gatech.edu/bitstream/handle/1853/64192/LU-DISSERTATION-2020.pdf Physics Based Compressive Sensing for Additive Manufacturing Process Monitoring] a PhD dissertation presented to the [https://www.me.gatech.edu/ Mechanical Engineering School at Georgia Tech].
 
* [https://www.sciencedirect.com/science/article/abs/pii/S0928098720304073 Preparation and Characterization of Hot-Melt Extruded Polycaprolactone-Based Filaments Intended for 3D-Printing of Tablets] by a team from the [https://www.farmaatsia.ut.ee/en Institute of Pharmacy], [https://www.biomeditsiin.ut.ee/en/research-groups/immunology Department of Immunology], and the [https://www.omi.ut.ee/en Department of Geology] of the University of Tartu, Estonia, and the [https://www.uef.fi/en/unit/school-of-pharmacy School of Pharmacy] of the University of Eastern Finland
 
* [https://www.sciencedirect.com/science/article/abs/pii/S0928098720304073 Preparation and Characterization of Hot-Melt Extruded Polycaprolactone-Based Filaments Intended for 3D-Printing of Tablets] by a team from the [https://www.farmaatsia.ut.ee/en Institute of Pharmacy], [https://www.biomeditsiin.ut.ee/en/research-groups/immunology Department of Immunology], and the [https://www.omi.ut.ee/en Department of Geology] of the University of Tartu, Estonia, and the [https://www.uef.fi/en/unit/school-of-pharmacy School of Pharmacy] of the University of Eastern Finland
 
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202004515 Shape Programming by Modulating Actuation over Hierarchical Length Scales] by a team from [https://www.espci.psl.eu/en/ the Higher School of Industrial Physics and Chemistry of the City of Paris\], [https://www.psl.eu/en the Paris Sciences and Letters University], [https://www.sorbonne-universite.fr/ the Sorbonne University], [https://www.sissa.it/ the International School of Advanced Studies (Italy)], and the [https://www.santannapisa.it/en/institute/biorobotics/biorobotics-institute the BioRobotics Institute of the International School of Advanced Studies of the University of Sant'Anna (Italy)]
 
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202004515 Shape Programming by Modulating Actuation over Hierarchical Length Scales] by a team from [https://www.espci.psl.eu/en/ the Higher School of Industrial Physics and Chemistry of the City of Paris\], [https://www.psl.eu/en the Paris Sciences and Letters University], [https://www.sorbonne-universite.fr/ the Sorbonne University], [https://www.sissa.it/ the International School of Advanced Studies (Italy)], and the [https://www.santannapisa.it/en/institute/biorobotics/biorobotics-institute the BioRobotics Institute of the International School of Advanced Studies of the University of Sant'Anna (Italy)]
Line 247: Line 421:
 
* [https://pubs.acs.org/doi/pdf/10.1021/acsami.0c05196 A poly(lactic acid)-based Ink for Biodegradable Printed Electronics with Conductivity Enhanced through Solvent Aging] by the [https://www.colorado.edu/mse/ Materials Science & Engineering Program of the Univeristy of Colorado, Boulder]
 
* [https://pubs.acs.org/doi/pdf/10.1021/acsami.0c05196 A poly(lactic acid)-based Ink for Biodegradable Printed Electronics with Conductivity Enhanced through Solvent Aging] by the [https://www.colorado.edu/mse/ Materials Science & Engineering Program of the Univeristy of Colorado, Boulder]
 
* [https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11375/0000/Advanced-3D-printed-EAP-actuator-applied-to-high-precision-large/10.1117/12.2556532.short?SSO=1&tab=ArticleLink Advanced 3D-Printed ElectroActive Polymer (EAP) Actuator Applied to High Precision Large Optical-Quality Surface Fabrication: First Results], a presentation in [https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11375.toc Proceedings Volume 11375 of Electroactive Polymer Actuators and Devices (EAPAD) XXII]
 
* [https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11375/0000/Advanced-3D-printed-EAP-actuator-applied-to-high-precision-large/10.1117/12.2556532.short?SSO=1&tab=ArticleLink Advanced 3D-Printed ElectroActive Polymer (EAP) Actuator Applied to High Precision Large Optical-Quality Surface Fabrication: First Results], a presentation in [https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11375.toc Proceedings Volume 11375 of Electroactive Polymer Actuators and Devices (EAPAD) XXII]
* [https://openscholarship.wustl.edu/cgi/viewcontent.cgi?article=1573&context=eng_etds Exploring Attacks and Defenses in Additive Manufacturing Processes: Implications in Cyber-Physical Security Processes: Implications in Cyber-Physical Security ], a Master of Science thesis paper presented to [https://engineering.wustl.edu/Pages/home.aspx the McKelvey School of Engineering at Washington University in St. Louis]
+
* [https://openscholarship.wustl.edu/cgi/viewcontent.cgi?article=1573&context=eng_etds Exploring Attacks and Defenses in Additive Manufacturing Processes: Implications in Cyber-Physical Security], a Master of Science thesis paper presented to [https://engineering.wustl.edu/Pages/home.aspx the McKelvey School of Engineering at Washington University in St. Louis]
 
* [https://www.sciencedirect.com/science/article/pii/S0378517320301393 3D Printing by Fused Deposition Modeling of Single- and Multi-Compartment Hollow Systems for Oral Delivery - A Review] by a team from [http://users.unimi.it/gazzalab/locations/dipartimento-scienze-farmaceutiche-sezione-di-tecnologia-e-legislazione-farmaceutiche-maria-edvige-sangalli/ Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano]
 
* [https://www.sciencedirect.com/science/article/pii/S0378517320301393 3D Printing by Fused Deposition Modeling of Single- and Multi-Compartment Hollow Systems for Oral Delivery - A Review] by a team from [http://users.unimi.it/gazzalab/locations/dipartimento-scienze-farmaceutiche-sezione-di-tecnologia-e-legislazione-farmaceutiche-maria-edvige-sangalli/ Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano]
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/app.49117 Evaluation of Additively Manufactured Ultraperformance Polymers to use as Thermal Protection Systems for Spacecraft] by a team from Texas and Australia.
+
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/app.49117 Evaluation of Additively Manufactured Ultraperformance Polymers to use as Thermal Protection Systems for Spacecraft] by a team from [https://www.rmit.edu.au/research/centres-collaborations/centre-for-additive-manufacturing Centre for Additive Manufacturing, School of Engineering, Royal Melbourne Institute of Technology University] and [https://www.engr.utexas.edu/academics/mechanical-engineering Department of Mechanical Engineering, The University of Texas at Austin]
 
* [https://search.informit.com.au/documentSummary;dn=904356964367662;res=IELENG 3D Printing of Recycled PET Polymer Composite Infused with Sustainable Carbon] by a team from the [https://www.tuskegee.edu/programs-courses/colleges-schools/coe/materials-science-and-engineering-home Materials Science & Engineering Department of Tuskegee University]
 
* [https://search.informit.com.au/documentSummary;dn=904356964367662;res=IELENG 3D Printing of Recycled PET Polymer Composite Infused with Sustainable Carbon] by a team from the [https://www.tuskegee.edu/programs-courses/colleges-schools/coe/materials-science-and-engineering-home Materials Science & Engineering Department of Tuskegee University]
  
==== Published in 2019 ====
+
[[#top|Top]]
 +
 
 +
== FDM/FFF, 2019 ==
  
 
* [https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1432&context=mechengfacpub Bioresorbable Composite Stents for Enhanced Response of Vascular Smooth Muscle Cells] by H. Mozafari from [https://engineering.unl.edu/mme/ The Department of Mechanical & Materials Engineering at the University of Nebraska - Lincoln]
 
* [https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1432&context=mechengfacpub Bioresorbable Composite Stents for Enhanced Response of Vascular Smooth Muscle Cells] by H. Mozafari from [https://engineering.unl.edu/mme/ The Department of Mechanical & Materials Engineering at the University of Nebraska - Lincoln]
Line 273: Line 449:
 
* [https://www.sciencedirect.com/science/article/pii/S0032386119301107 Fast Scanning Calorimetry for Semicrystalline Polymers in Fused Deposition Modeling] by a team from [http://www.mse.gatech.edu/ The Materials Science and Engineering School of Georgia Tech]
 
* [https://www.sciencedirect.com/science/article/pii/S0032386119301107 Fast Scanning Calorimetry for Semicrystalline Polymers in Fused Deposition Modeling] by a team from [http://www.mse.gatech.edu/ The Materials Science and Engineering School of Georgia Tech]
  
==== Published in 2018 ====
+
[[#top|Top]]
 +
 
 +
== FDM/FFF, 2018 ==
  
 
* [https://search.proquest.com/openview/eea6c862dd126abc5b01f7164e8f2761/1?pq-origsite=gscholar&cbl=18750&diss=y Synthesis and Characterization of Novel Bioplastics by innovative 3D Printing Approaches], a Masters Thesis by Kathryn Hall from the [http://und.edu University of North Dakota]
 
* [https://search.proquest.com/openview/eea6c862dd126abc5b01f7164e8f2761/1?pq-origsite=gscholar&cbl=18750&diss=y Synthesis and Characterization of Novel Bioplastics by innovative 3D Printing Approaches], a Masters Thesis by Kathryn Hall from the [http://und.edu University of North Dakota]
Line 286: Line 464:
 
* [https://www.sciencedirect.com/science/article/pii/S0266353817318365 Fabrication and Properties of Novel Polymer-Metal Composites using Fused Deposition Modeling] by the [https://www.wpi.edu/academics/departments/mechanical-engineering Mechanical Engineering Staff] at [https://www.wpi.edu/ Worcester Polytechnic Institute]
 
* [https://www.sciencedirect.com/science/article/pii/S0266353817318365 Fabrication and Properties of Novel Polymer-Metal Composites using Fused Deposition Modeling] by the [https://www.wpi.edu/academics/departments/mechanical-engineering Mechanical Engineering Staff] at [https://www.wpi.edu/ Worcester Polytechnic Institute]
  
==== Published in 2017 ====
+
[[#top|Top]]
 +
 
 +
== FDM/FFF, 2017 ==
  
 
*[http://hyrel3d.net/papers/3D_Printing_of_the_Flight_Model.pdf NANOSATC-BR2, 2 unit CUBESAT, Power Analysis, Solar Flux Prediction, Design and 3D Printing of the Flight Model from the UFSM & INPE’S NANOSATC-BR, CUBESAT Development Program] by a team from the [http://site.ufsm.br Federal University of Santa Maria (UFSM), Brasil].
 
*[http://hyrel3d.net/papers/3D_Printing_of_the_Flight_Model.pdf NANOSATC-BR2, 2 unit CUBESAT, Power Analysis, Solar Flux Prediction, Design and 3D Printing of the Flight Model from the UFSM & INPE’S NANOSATC-BR, CUBESAT Development Program] by a team from the [http://site.ufsm.br Federal University of Santa Maria (UFSM), Brasil].
Line 296: Line 476:
 
*[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5331332/ Dynamical Majorana edge modes in a broad class of topological mechanical systems] by [http://www.njit.edu The New Jersey Institute of Technology]
 
*[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5331332/ Dynamical Majorana edge modes in a broad class of topological mechanical systems] by [http://www.njit.edu The New Jersey Institute of Technology]
  
==== Published in 2016 ====
+
[[#top|Top]]
 +
 
 +
== FDM/FFF, 2016 ==
  
 
* [https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170000214.pdf High Temperature Thermoplastic Additive Manufacturing Using Low-Cost, Open-Source Hardware] published by [https://www.nasa.gov NASA]
 
* [https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170000214.pdf High Temperature Thermoplastic Additive Manufacturing Using Low-Cost, Open-Source Hardware] published by [https://www.nasa.gov NASA]
 +
 +
[[#top|Top]]

Latest revision as of 13:07, 10 September 2025

Below is a list of published works citing Hyrel equipment.

The pages about Unheated or Chilled Reservoir Printing, also known as Robocasting or DIW (Direct Ink Writing), SEP (Semisolid Extrusion Printing), SSE (Semisolid Extrusion). 3DCP (3D Concrete Printing), or DCC (Digital Concrete Construction), ran too long, and have been split off to the new Published Papers (DIW) page.

Count

665 total documents as of 10 September, 2025.

Non-Traditional Manufacturing

Including:

  • 4D Printing
  • Antennas, Sensors, Batteries, Inductors, and Circuits
  • Electro-Spinning
  • Electro-Melt-Spinning
  • Engineered Living Materials (ELM)
  • Melt Electro-Writing (MEW)
  • Multiphase Direct Ink Writing (MDIW)
  • Nanostructures
  • Micro-Encapsulated Phase-Changing Materials (MEPCM)
  • Plasma Treatments
  • Printing with Embedded Fibers
  • Shape Memory Polymers
  • And combining two or more additive manufacturing methods in a single build.

NTM, 2025

Top

NTM, 2024

Top

NTM, 2023

Top

NTM, 2022

Top

NTM, 2021

Top

NTM, 2020

Top

NTM, 2019

Top

NTM, 2018

Top

NTM, 2017

Top

NTM, 2016

Top

NTM, 2015

Top

Unheated or Chilled Reservoir Printing

Also known as Robocasting or DIW (Direct Ink Writing), SEP (Semisolid Extrusion Printing), SSE (Semisolid Extrusion). 3DCP (3D Concrete Printing), or DCC (Digital Concrete Construction).

These pages ran too long, and have been split off to the new Published Papers (DIW) page.

Heated Reservoir Printing

Also known as DPE (Direct Powder Extrusion) or HME (Hot Melt Extrusion).

DPE, HME 2025

Top

DPE, HME 2024

Top

DPE, HME 2023

Top

DPE, HME 2022

Top

DPE, HME 2021

Top

DPE, HME 2020

Top

DPE, HME 2019

Top

DPE, HME 2018

Top

DPE, HME 2017

Top

Filament Printing

Also known as FFF (Fused Filament Fabrication) or FDM (Fused Deposition Modeling).

FDM/FFF, 2025

Top

FDM/FFF, 2024

Top

FDM/FFF, 2023

Top

FDM/FFF, 2022

Top

FDM/FFF, 2021

Top

FDM/FFF, 2020

Top

FDM/FFF, 2019

Top

FDM/FFF, 2018

Top

FDM/FFF, 2017

Top

FDM/FFF, 2016

Top