Difference between revisions of "Published Papers"

From Hyrel3D
Jump to: navigation, search
(Count)
(DIW/SEP/SSE, 2024)
Line 158: Line 158:
 
== DIW/SEP/SSE, 2024 ==
 
== DIW/SEP/SSE, 2024 ==
  
 +
* [https://www.proquest.com/openview/bcdee9005967fc5aa3952c2ff0bcbe14/1?pq-origsite=gscholar&cbl=18750&diss=y Direct Ink Writing Of PVDF/PEG/CA Composite Based Water Treatment Membranes], a Master's thesis presented to [https://www.asu.edu/ Arizona State University]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S0167577X2401317X On-demand Release of Fucoidan From 3d-printed Cardiac Scaffolds Based on Chitosan/silk Fibroin/polyaniline] by a team from [https://nbuam.marmara.edu.tr/en Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Turkey] and [https://bio.ui.ac.ir/en Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S0167577X2401317X On-demand Release of Fucoidan From 3d-printed Cardiac Scaffolds Based on Chitosan/silk Fibroin/polyaniline] by a team from [https://nbuam.marmara.edu.tr/en Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Turkey] and [https://bio.ui.ac.ir/en Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S2405829724004963 Machine Learning–Enabled Direct Ink Writing of Conductive Polymer Composites for Enhanced Performance in Thermal Management and Current Protection] by a team from multiple departments at both [https://www.uga.edu University of Georgia] and [https://www.asu.edu Arizona State University]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S2405829724004963 Machine Learning–Enabled Direct Ink Writing of Conductive Polymer Composites for Enhanced Performance in Thermal Management and Current Protection] by a team from multiple departments at both [https://www.uga.edu University of Georgia] and [https://www.asu.edu Arizona State University]

Revision as of 14:15, 14 August 2024

Below is a list of published works citing Hyrel equipment.

Count

555 documents as of 14 August, 2024.

Non-Traditional Manufacturing

Including:

  • Antennas, Sensors, Batteries, Inductors, and Circuits
  • Electro-Spinning
  • Electro-Melt-Spinning
  • Melt Electro-Writing (MEW)
  • Multiphase Direct Ink Writing (MDIW)
  • 4D Printing
  • Shape Memory Polymers
  • Nanostructures
  • Micro-Encapsulated Phase-Changing Materials (MEPCM)
  • Printing with Embedded Fibers
  • And combining two or more additive manufacturing methods in a single build.

NTM, 2024

NTM, 2023

NTM, 2022

NTM, 2021

NTM, 2020

NTM, 2019

NTM, 2018

NTM, 2017

NTM, 2016

NTM, 2015

Unheated or Chilled Reservoir Printing

Also known as Robocasting or DIW (Direct Ink Writing), SEP (Semisolid Extrusion Printing), SSE (Semisolid Extrusion). 3DCP (3D Concrete Printing), or DCC (Digital Concrete Construction).

DIW/SEP/SSE, 2024

DIW/SEP/SSE, 2023

DIW/SEP/SSE, 2022

DIW/SEP/SSE, 2021

DIW/SEP/SSE, 2020

DIW/SEP/SSE, 2019

DIW/SEP/SSE, 2018

DIW/SEP/SSE, 2017

DIW/SEP/SSE, 2016

DIW/SEP/SSE, 2015

DIW/SEP/SSE, 2014

Heated Reservoir Printing

Also known as DPE (Direct Powder Extrusion) or HME (Hot Melt Extrusion).

DPE, HME 2024

DPE, HME 2023

DPE, HME 2022

DPE, HME 2021

DPE, HME 2020

DPE, HME 2019

DPE, HME 2018

DPE, HME 2017

Filament Printing

Also known as FFF (Fused Filament Fabrication) or FDM (Fused Deposition Modeling).

FDM/FFF, 2024

FDM/FFF, 2023

FDM/FFF, 2022

FDM/FFF, 2021

FDM/FFF, 2020

FDM/FFF, 2019

FDM/FFF, 2018

FDM/FFF, 2017

FDM/FFF, 2016