Difference between revisions of "Published Papers"

From Hyrel3D
Jump to: navigation, search
(DIW/SEP/SSE, 2022)
(DIW/SEP/SSE, 2021)
Line 200: Line 200:
  
 
These pages ran too long, and have been split off to the new '''[[Published_Papers_(DIW)|Published Papers (DIW)]]''' page.
 
These pages ran too long, and have been split off to the new '''[[Published_Papers_(DIW)|Published Papers (DIW)]]''' page.
 
== DIW/SEP/SSE, 2021 ==
 
 
* [https://www.sciencedirect.com/science/article/pii/S0008884621001472 Rheological Characterization of 3D Printable Geopolymers] by a team from several departments of the [https://www.dtu.dk/english/ Technical University of Denmark], [https://www.imperial.ac.uk/civil-engineering/ Civil and Environmental Engineering, Imperial College London], and [https://www.regenerative-biomaterials.nl/ Dentistry - Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, the Netherlands]
 
* [https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202103309 Anisotropic Iridescence and Polarization Patterns in a Direct Ink Written Chiral Photonic Polymer] by a team from [https://www.tue.nl/en/research/research-groups/stimuli-responsive-functional-materials-devices/ Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e)] and [https://www.sabic.com/en/about/innovation/our-technology-Innovation-centers T&I, SABIC], both in The Netherlands.
 
*[https://iopscience.iop.org/article/10.1088/2058-8585/ac442e/meta Direct Ink Write Multi-Material Printing of PDMS-BTO Composites with MWCNT Electrodes for Flexible Force Sensors] by a team from the [https://www.utep.edu/ University of Texas at El Paso] and the [https://kcnsc.doe.gov/ U.S. Department of Energy's Kansas City National Security Campus]
 
*[https://iopscience.iop.org/article/10.1088/1361-6528/ac40bc/meta Printed Copper-Nanoplate Conductor for Electro-Magnetic Interference] by a team from several departments of the [http://www.buffalo.edu/ State University of New York at Buffalo]
 
*[https://pubs.acs.org/doi/full/10.1021/acsami.1c20348 Patterned Actuators via Direct Ink Writing of Liquid Crystals] by a team from the [https://www.tue.nl/en/research/research-groups/stimuli-responsive-functional-materials-devices/ Laboratory for Stimuli-responsive Functional Materials & Devices of the Department of Chemical Engineering and Chemistry of Eindhoven University of Technology] and the [https://ioe.iitm.ac.in/project/responsive-soft-matter/ Center for Responsive Soft Matter, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai]
 
*[https://www.sciencedirect.com/science/article/pii/S0023643821020843 Valorization of Salmon Industry By-Products: Evaluation of Salmon Skin Gelatin as a Biomaterial suitable for 3D Food Printing] by a team from [http://www.ubiobio.cl/w/# Food Engineering Department, Universidad del Bío-Bío] and [https://www.uchile.cl/portal/english-version/faculties-and-institutes/62838/faculty-of-chemical-sciences-and-pharmacy Department of Food Science and Chemical Technology, Faculty of Chemical Sciences and Pharmacy, Universidad de Chile]
 
*[https://onlinelibrary.wiley.com/doi/full/10.1002/admt.202100974 3D Printing of Transparent Silicone Elastomers] by a team from [https://www.llnl.gov/ Lawrence Livermore National Laboratory]
 
*[https://iopscience.iop.org/article/10.1088/1758-5090/ac3d75/meta Effects of Transglutaminase Cross-Linking Process on Printability of Gelatin Microgel-Gelatin Solution Composite Bioink] by a team from the [https://www.ufl.edu/ University of Florida]
 
*[https://www.sciencedirect.com/science/article/pii/S2667025921000315 3D Printing of Osage Orange Extract/Chitosan Scaffolds for Soft Tissue Engineering] by a team from [https://www.marmara.edu.tr/en Marmara University] and [https://www.yildiz.edu.tr/en/ Yildiz Technical University]
 
*[https://onlinelibrary.wiley.com/doi/abs/10.1002/prep.202100231 Factors Affecting Substrate Heating with Printed Thermites] from Dr. Matthew Ervin, [https://www.arl.army.mil/ US Army Research Laboratory]
 
*[https://www.sciencedirect.com/science/article/pii/S2666964121000266 Effects of Crosslinking on the Physical Solid-State and Dissolution Properties of 3D-printed Theophylline Tablets] by a team from the [https://www.ut.ee/en University of Tartu] and the [https://www.helsinki.fi/en University of Helsinki]
 
*[https://www.sciencedirect.com/science/article/pii/S2590006421000284 Long-term Stabilized Amorphous Calcium Carbonate—an Ink for Bio-inspired 3D Printing] by a team from the [https://materials.technion.ac.il/en/Research/bio-inspired-surface-engineering-and-biomineralization-lab-2/ Bio-Inspired Surface Engineering and Biomineralization Lab of Technion University]
 
*[https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.17412 Direct Ink Write 3D Printing of High Solids Loading Bimodal Distributions of Particles] by a team from [http://gatech.edu Georgia Tech]'s schools of [https://www.mse.gatech.edu/ School of Material Science and Engineering] and [https://chbe.gatech.edu/ School of Chemical and Biomolecular Engineering]
 
*[https://commons.erau.edu/cgi/viewcontent.cgi?article=1628&context=edt Additively Manufactured Dielectric Elastomer Actuators: Development and Performance Enhancement Development and Performance], a thesis submitted for a [https://erau.edu/degrees/phd/aerospace-engineering PhD in Aerospace Engineering at Embry-Riddle Aeronautical University]
 
*[https://pubs.acs.org/doi/abs/10.1021/acsbiomaterials.1c00483 3D Printing of Antibacterial, Biocompatible, and Biomimetic Hybrid Aerogel-Based Scaffolds with Hierarchical Porosities via Integrating Antibacterial Peptide-Modified Silk Fibroin with Silica Nanostructure] by a team primarily from [http://www.oc.uni-koeln.de/emain.html Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne]
 
*[https://arxiv.org/pdf/2108.08747.pdf Printable, cCastable, Nanocrystalline cCellulose-epoxy Composites Exhibiting Hierarchical Nacre-like Toughening] by a team from [http://meche.mit.edu/ Department of Mechanical Engineering, Massachusetts Institute of Technolog], [http://www.crpp.cnrs.fr/en/home-page/ Centre de Recherche Paul Pascal, CNRS], and [https://umi.mit.edu/thelab MultiScale Material Science for Energy and Environment, CNRS-MIT]
 
*[https://www.sciencedirect.com/science/article/abs/pii/S2214860421003602#! 3D-Printed Electroactive Polymer Force-Actuator for Large and High Precise Optical Mirror Applications] by a team primarily from [https://www.insa-lyon.fr/en/ INSA-Lyon, France]
 
*[https://pubs.acs.org/doi/abs/10.1021/acsabm.1c00616 Properties Regulation and Biological Applications of Decellularized Peripheral Nerve Matrix Hydrogel] by a team from [http://www.sysu.edu.cn/en/index.htm Sun Yat-sen University, Guangzhou, China]
 
*[https://arc.aiaa.org/doi/abs/10.2514/6.2021-3699 Extrusion of AP Composite Propellant with Self-aligned Reactive Fibers] by a team from [http://purdue.edu Purdue University] and [https://www.utsa.edu/ University of Texas, San Antonio]
 
*[https://www.sciencedirect.com/science/article/pii/S2772369021000050 Additively Manufactured Reactive Material Architectures For Exothermic Brazing] by a team from [https://engineering.vanderbilt.edu/ Vanderbilt University's School of Engineering]
 
*[https://pubs.acs.org/doi/full/10.1021/acsmaterialsau.1c00017 Structure–Processing–Property Relationships of 3D Printed Porous Polymeric Materials] by a team from various departments of the [https://engineering.tamu.edu/ College of Engineering, Texas A&M University]
 
*[https://link.springer.com/article/10.1557/s43579-021-00062-8 The Potential of Additively Manufactured Membranes for Selective Separation and Capture of CO2] by a team from the [https://coe.upd.edu.ph/academics-overview/graduate-degree-programs/mining-metallurgical-and-materials-engineering/ Department of Mining, Metallurgical, and Materials Engineering, University of the Philippines] and [https://cbe.utk.edu/ Department of Chemical and Biomolecular Engineering and Joint Institute for Advanced Materials, University of Tennessee, Knoxville]
 
*[https://www.sciencedirect.com/science/article/abs/pii/S0160791X21001433 Sociotechnical Alignment in Biomedicine: The 3D Bioprinting Market beyond Technology Convergence] by a team from [https://www.ucl.ac.uk/ University College London] and [https://www.sussex.ac.uk/ University of Sussex]
 
*[https://arxiv.org/ftp/arxiv/papers/2107/2107.04146.pdf Charge Transport in Electronic Devices Printed with Inks of Quasi-1D van der Waals Materials], by a team from [https://www.ucr.edu/ University of California, Riverside] and [https://www.unl.edu/ University of Nebraska, Lincoln]
 
*[https://www.nature.com/articles/s41598-021-93852-y Characterize Traction–separation Relation and Interfacial Imperfections by Data-driven Machine Learning Models] by a team from [https://www.ornl.gov/ Oak Ridge National Laboratory] and the [https://www.unt.edu/ University of North Texas]
 
*[https://drum.lib.umd.edu/bitstream/handle/1903/27406/Rehwoldt_umd_0117E_21544.pdf Rapid Heating and Chemical Speciation Characterization for Combustion Performance Analysis of Metallized, Nanoscale Thermites and Pvdfbound Solid Propellant Compositions], a PhD dissertation presented to the [http://www.chem.umd.edu/ University of Maryland Department of Chemistry and Biochemistry]
 
*[https://pubs.acs.org/doi/abs/10.1021/acsmaterialslett.1c00132 Highly Recyclable, Mechanically Isotropic and Healable 3D-Printed Elastomers via Polyurea Vitrimers] by a team from [https://www.ornl.gov/ Oak Ridge National Laboratory]'s [https://www.ornl.gov/division/csd Chemical Sciences Division] and [https://www.ornl.gov/facility/cnms Center for Nanophase Materials Sciences], and the [https://cbe.utk.edu/ Department of Chemical and Biomolecular Engineering of the University of Tennessee]
 
*[https://smartech.gatech.edu/bitstream/handle/1853/64876/ADAMS-UNDERGRADUATERESEARCHOPTIONTHESIS-2021.pdf?sequence=1 Extent of UV Curing in Highly Loaded Systems for Direct Ink Writing], an undergraduate paper submitted to [http://gatech.edu Georgia Tech]
 
*[https://www.sciencedirect.com/science/article/abs/pii/S1364032121006559 The innovative contribution of additive manufacturing towards revolutionizing fuel cell fabrication for clean energy generation: A comprehensive review] by a team from [https://en.szu.edu.cn/ Shenzhen University]
 
*[https://doi.org/10.2341/19-286-L Effect of Operator Experience on Ability to Place Sequential, 2-mm-thick Increments of Composite] by a team from the [https://www.augusta.edu/dentalmedicine/academics/departments/restorative/  Department of Restorative Sciences, Dental College of Georgia at Augusta University]
 
*[https://pubs.acs.org/doi/abs/10.1021/acsami.1c05025 Liquid Crystal-Mediated 3D Printing Process to Fabricate Nano-Ordered Layered Structures] by a team from [https://www.unsw.edu.au/ University of New South Wales], [https://www.uni-hannover.de/en/ Leibniz Universität, Hannover], [https://www.monash.edu/ Monash University], [https://www.rmit.edu.au/ RMIT University], [https://www.shinshu-u.ac.jp/english/ Shinshu University, Tokida], and [http://www.crpp-bordeaux.cnrs.fr/?lang=en Centre de Recherche Paul Pascal−CNRS, University of Bordeaux]
 
*[https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.202100211 3D Printing of Flexible Composites via Magnetophoresis: Toward Medical Application Based on Low-Frequency Induction Heating Effect] by a team from [https://www.insa-lyon.fr/en/ University of Lyon, INSA-Lyon, France]
 
*[https://www.sciencedirect.com/science/article/abs/pii/S0969806X21002668 Flexible 3D Printed Silicones for Gamma and Neutron Radiation Shielding] by a team from [https://www.lanl.gov Los Alamos National Laboratory], [https://kcnsc.doe.gov US Department of Energy's Kansas City National Security Campus], and [https://eng.kist.re.kr/kist_eng/main/ Korea Institute of Science and Technology]
 
*[https://www.pnas.org/content/118/23/e2020160118 Persistent Polyamorphism in the Chiton Tooth: From a new Biomineral to Inks for Additive Manufacturing] by a team from [https://www.mccormick.northwestern.edu/materials-science/ Materials Science and Engineering, Northwestern University] and [https://www.aps.anl.gov/Sector-3 Advanced Photon Source, Sector 3, Argonne National Laboratory]
 
*[https://www.sciencedirect.com/science/article/abs/pii/S2214860421002141 Direct Ink Writing of ZrB2-SiC Chopped Fiber Ceramic Composites] by a team from the [https://www.utk.edu/ University of Tennessee, Knoxville], [https://www.gatech.edu/ Georgia Institute of Technology], and [https://www.afrl.af.mil/ Air Force Research Laboratory]
 
*[https://journals.sagepub.com/doi/abs/10.1177/00219983211002237 3D Printing of Spent Coffee Ground Derived Biochar Reinforced Epoxy Composites] by a team from [https://www.tuskegee.edu/ Tuskegee University]
 
*[https://pubs.acs.org/doi/abs/10.1021/acs.langmuir.1c00553 3D Printing of Cellulose Nanocrystal-Loaded Hydrogels through Rapid Fixation by Photopolymerization] by a team from the [https://en.huji.ac.il/en Hebrew University of Jerusalem] and [https://www.polito.it/?lang=en Politecnico di Torino]
 
*[https://ieeexplore.ieee.org/abstract/document/9439529 Additive Manufacturing of Hetero-Magnetic Coupled Inductors] by a team from [https://vt.edu/ Virginia Polytechnic Institute and State University]
 
*[https://www.sciencedirect.com/science/article/abs/pii/S2214860421002086 On the Additive Manufacturing (3D Printing) of Viscoelastic Materials and Flow Behavior: From Composites to Food Manufacturing] by a team from [https://case.edu/ Case Western Reserve University], [http://www.usc.edu.ph/ University of San Carlos, Philippines], [https://www.adamson.edu.ph/2018/ Adamson University, Philippines], [https://www.utk.edu/ University of Tennessee, Knoxville], and [https://www.ornl.gov/ Oak Ridge National Laboratory]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S0141813021009521#! Recent trends in Natural Polysaccharide based Bioinks for Multiscale 3D Printing in Tissue Regeneration: A Review] by a team from [https://www.psgias.ac.in/ Tissue Engineering Laboratory, PSG Institute of Advanced Studies], [https://www.csir.res.in/csir-labs Department of Polymer Science and Technology, Council of Scientific and Industrial Research - Central Leather Research Institute], and [https://www.engr.colostate.edu/me/2016/01/27/biomaterials-surface-micronano-engineering-laboratory/ Biomaterial Surface Micro/Nanoengineering Laboratory, Colorado State University]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S002197972100521X 3D Printable Magnesium-based Cements Towards the Preparation of Bioceramics] by a team from [https://www2.chim.unifi.it/vp-110-about-the-department.html?newlang=eng Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, Italy]
 
* [https://www.nature.com/articles/s41598-021-87072-7 Carbohydrate Binding Module-Fused Antibodies Improve the Performance of Cellulose-Based Lateral Flow Immunoassays] by a team including members from several laboratories and departments of the [https://www.tu-darmstadt.de/index.en.jsp Technical University of Darmstadt] and the [https://www.tu-braunschweig.de/en/bbt/translate-to-english-biotechnologie Department of Biotechnology, Technical University of Braunschweig]
 
* [https://www.sciencedirect.com/science/article/pii/S2590238521001260?dgcid=coauthor Thermal Energy Regulation with 3D Printed Polymer-Phase Change Material Composites] by a team from the [https://engineering.tamu.edu/materials/index.html Department of Materials Science and Engineering, Texas A&M University] and [https://www.chem.tamu.edu/ Department of Chemistry, Texas A&M University]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S2214860421001287 Computational Study of Extrusion Bioprinting with Jammed Gelatin Microgel-Based Composite Ink] by a team from the [https://mae.ufl.edu/ Department of Mechanical and Aerospace Engineering, University of Florida] and the [http://me.zju.edu.cn/meenglish/15428/list.htm School of Mechanical Engineering, Zhejiang University]
 
* [https://aip.scitation.org/doi/abs/10.1063/5.0047183 Recent Advances in 3D Printed Wound Dressings] by a team from the [https://www.ui.ac.id/ University of Indonesia]
 
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.202001115 Multifunctional Reactive Nanocomposites via Direct Ink Writing] by a team from [https://www.jhu.edu/ Johns Hopkins University]'s Materials Science and Engineering Department and Hopkins Extreme Materials Institute, as well as [https://www.draper.com/ The Charles Stark Draper Laboratory, Inc.]
 
* [https://pubs.rsc.org/en/content/articlelanding/2021/ta/d0ta11341g/unauth#!divAbstract Direct Ink Writing of Recyclable and '''in situ''' Repairable Photothermal Polyurethane for Sustainable 3D Printing Development] by a team with members from several departments from [https://www.uwo.ca/ The University of Western Ontario], as well as from the [http://www.at0086.com/shanghu/College.aspx?c=266 School of Mechatronic Engineering and Automation, Shanghai University]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S0021979721002204 Photopolymerizable Pullulan: Synthesis, Self-Assembly and Inkjet Printing] by a team from [https://www2.chim.unifi.it/vp-110-about-the-department.html?newlang=eng CSGI & Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, Italy]
 
* [https://pubs.acs.org/doi/abs/10.1021/acsami.0c18095 Ultrathin and Ultrasensitive Printed Carbon Nanotube-Based Temperature Sensors Capable of Repeated Uses on Surfaces of Widely Varying Curvatures and Wettabilities] by a team from [https://eng.umd.edu/ Department of Mechanical Engineering, University of Maryland, College Park]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S221486042100083X Moisture Sensitivity and Compressive Performance of 3D-Printed Cellulose-Biopolyester Foam Lattices] by a team from [https://www.waikato.ac.nz/study/subjects/engineering School of Engineering, The University of Waikato], [http://www.cacm.auckland.ac.nz/en/cacm.html Centre for Advanced Composite Materials, The University of Auckland], and [https://www.wgtn.ac.nz/design-innovation School of Design Innovation, Victoria University Wellington]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S0928493121001156 A Dual-Ink 3D Printing Strategy to Engineer Pre-Vascularized Bone Scaffolds In-Vitro] by a team from several departments of the [https://www.ohsu.edu/ Oregon Health and Science University] and the [https://masters.unige.ch/medicine#dental-medicine University of Geneva, University Clinic of Dental Medicine]
 
* [https://www.biorxiv.org/content/biorxiv/early/2021/02/11/2021.02.10.430691.full.pdf Niche-guided Tissue Patterning by Chemomechanical Flow Lithography], by a team from [https://arctcibe.org/ ARC Training Centre for Innovative BioEngineering], [https://www.cmrijeansforgenes.org.au/ Embryology Unit, Children's Medical Research Institute, Sydney], [https://www.sydney.edu.au/medicine-health/schools/school-of-medical-sciences.html School of Medical Science, Faculty of Medicine and Health, The University of Sydney], [https://sms.unsw.edu.au/ EMBL Australia, Single Molecule Science Node, School of Medical Sciences, UNSW, Sydney], and [https://bioe.uic.edu/ Department of Pharmacologyand Regenerative Medicine; Department of Bioengineering, University of Illinois at Chicago, Illinois]
 
* [https://aip.scitation.org/doi/full/10.1063/9.0000103 Synthesis of Magneto-Responsive Microswimmers for Biomedical Applications] by a team from [https://bau.edu.tr/academic/12581-faculty-of-engineering-and-natural-sciences Engineering and Natural Sciences, Bahcesehir University] and [https://www.pirireis.edu.tr/maritime-higher-vocational-school-mhvs Maritime Higher Vocational School, Piri Reis University]
 
* [https://www.postersessiononline.eu/173580348_eu/congresos/WBC2020/aula/-WBC2020_3512_WBC2020.pdf Extrusion Increases the Mechanical Properties of 3D-Printable Nanocomposite Biomaterials], by a team from the [https://uwaterloo.ca/waterloo-composite-biomaterial-systems-lab/ Composite Biomaterial Systems Laboratory, Systems Design Engineering, University of Waterloo]
 
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202008216 Synthetic Bone‐Like Structures Through Omnidirectional Ceramic Bioprinting in Cell Suspensions] by a team from the [https://www.unsw.edu.au/ University of New South Wales]'s [https://www.acn.unsw.edu.au/ Centre for Nanomedicine], [http://www.materials.unsw.edu.au/ School of Materials Science and Engineering], and [https://www.sydney.edu.au/engineering/schools/school-of-aerospace-mechanical-and-mechatronic-engineering.html School of Aerospace, Mechanical and Mechatronic Engineering]
 
 
[[#top|Top]]
 
  
 
== DIW/SEP/SSE, 2020 ==
 
== DIW/SEP/SSE, 2020 ==

Revision as of 14:28, 27 August 2025

Below is a list of published works citing Hyrel equipment.

Count

661 documents as of 27 August, 2025.

Non-Traditional Manufacturing

Including:

  • 4D Printing
  • Antennas, Sensors, Batteries, Inductors, and Circuits
  • Electro-Spinning
  • Electro-Melt-Spinning
  • Engineered Living Materials (ELM)
  • Melt Electro-Writing (MEW)
  • Multiphase Direct Ink Writing (MDIW)
  • Nanostructures
  • Micro-Encapsulated Phase-Changing Materials (MEPCM)
  • Plasma Treatments
  • Printing with Embedded Fibers
  • Shape Memory Polymers
  • And combining two or more additive manufacturing methods in a single build.

NTM, 2025

Top

NTM, 2024

Top

NTM, 2023

Top

NTM, 2022

Top

NTM, 2021

Top

NTM, 2020

Top

NTM, 2019

Top

NTM, 2018

Top

NTM, 2017

Top

NTM, 2016

Top

NTM, 2015

Top

Unheated or Chilled Reservoir Printing

Also known as Robocasting or DIW (Direct Ink Writing), SEP (Semisolid Extrusion Printing), SSE (Semisolid Extrusion). 3DCP (3D Concrete Printing), or DCC (Digital Concrete Construction).

These pages ran too long, and have been split off to the new Published Papers (DIW) page.

DIW/SEP/SSE, 2020

Top

DIW/SEP/SSE, 2019

Top

DIW/SEP/SSE, 2018

Top

DIW/SEP/SSE, 2017

Top

DIW/SEP/SSE, 2016

Top

DIW/SEP/SSE, 2015

Top

DIW/SEP/SSE, 2014

Top

Heated Reservoir Printing

Also known as DPE (Direct Powder Extrusion) or HME (Hot Melt Extrusion).

DPE, HME 2025

Top

DPE, HME 2024

Top

DPE, HME 2023

Top

DPE, HME 2022

Top

DPE, HME 2021

Top

DPE, HME 2020

Top

DPE, HME 2019

Top

DPE, HME 2018

Top

DPE, HME 2017

Top

Filament Printing

Also known as FFF (Fused Filament Fabrication) or FDM (Fused Deposition Modeling).

FDM/FFF, 2025

Top

FDM/FFF, 2024

Top

FDM/FFF, 2023

Top

FDM/FFF, 2022

Top

FDM/FFF, 2021

Top

FDM/FFF, 2020

Top

FDM/FFF, 2019

Top

FDM/FFF, 2018

Top

FDM/FFF, 2017

Top

FDM/FFF, 2016

Top