Difference between revisions of "Published Papers"

From Hyrel3D
Jump to: navigation, search
(Published in 2020)
Line 71: Line 71:
 
* [https://www.sciencedirect.com/science/article/abs/pii/S0950061820337132 Designing 3D Printable Cementitious Materials with Gel-Forming Polymers] by a team from the Departments of [https://www.tntech.edu/engineering/programs/che/index.php Chemical Engineering] and [https://www.tntech.edu/cas/chemistry/index.php Chemistry] of [https://www.tntech.edu/ Tennessee Technological University] and the [https://www.nist.gov/ National Institute of Standards and Testing (NIST)]
 
* [https://www.sciencedirect.com/science/article/abs/pii/S0950061820337132 Designing 3D Printable Cementitious Materials with Gel-Forming Polymers] by a team from the Departments of [https://www.tntech.edu/engineering/programs/che/index.php Chemical Engineering] and [https://www.tntech.edu/cas/chemistry/index.php Chemistry] of [https://www.tntech.edu/ Tennessee Technological University] and the [https://www.nist.gov/ National Institute of Standards and Testing (NIST)]
 
* [https://pubs.acs.org/doi/abs/10.1021/acsapm.0c00839 A Dual Approach in Direct Ink Writing of Thermally Cured Shape Memory Rubber Toughened Epoxy] by a team from the [https://engineering.case.edu/macromolecular-science-and-engineering Department of Macromolecular Science and Engineering, Case Western Reserve University] and the [https://web.chemcu.org/index.php/en/ Department of Chemistry, Chulalongkorn University, Thailand]
 
* [https://pubs.acs.org/doi/abs/10.1021/acsapm.0c00839 A Dual Approach in Direct Ink Writing of Thermally Cured Shape Memory Rubber Toughened Epoxy] by a team from the [https://engineering.case.edu/macromolecular-science-and-engineering Department of Macromolecular Science and Engineering, Case Western Reserve University] and the [https://web.chemcu.org/index.php/en/ Department of Chemistry, Chulalongkorn University, Thailand]
* [https://mail.google.com/mail/u/0/#inbox/FMfcgxwKjTPjgzMMXnXxdtpnrwGQwQrS Mechanics of Nozzle Clogging during direct ink writing of Fiber-Reinforced Composites] by a team from the [https://www.afrl.af.mil/RX/ Materials and Manufacturing Directorate of the US Air Force Research Laboratoy], the [https://udayton.edu/udri/ University of Dayton Research Institute], the [https://mabe.utk.edu/ Mechanical, Aerospace, and Biomedical Engineering Department or the University of Tennessee] and the [https://www.chess.cornell.edu/ Cornell High Energy Synchrotron Source]
+
* [https://www.sciencedirect.com/science/article/abs/pii/S2214860420310733 Mechanics of Nozzle Clogging during direct ink writing of Fiber-Reinforced Composites] by a team from the [https://www.afrl.af.mil/RX/ Materials and Manufacturing Directorate of the US Air Force Research Laboratoy], the [https://udayton.edu/udri/ University of Dayton Research Institute], the [https://mabe.utk.edu/ Mechanical, Aerospace, and Biomedical Engineering Department or the University of Tennessee] and the [https://www.chess.cornell.edu/ Cornell High Energy Synchrotron Source]
 
* [https://ieeexplore.ieee.org/abstract/document/9244494 Composite Hydrogels and their application for 3D Bioprinting in Regenerative Medicine] by from the [http://www.mu-varna.bg/EN Medical University of Varna, Bulgaria]
 
* [https://ieeexplore.ieee.org/abstract/document/9244494 Composite Hydrogels and their application for 3D Bioprinting in Regenerative Medicine] by from the [http://www.mu-varna.bg/EN Medical University of Varna, Bulgaria]
 
* [https://ieeexplore.ieee.org/abstract/document/9224960 Effects of Co3O4 Addition on Magnetic properties of NiCuZn Ferrite Feedstock for 3D-printing Power Magnetic Components] by a team from [https://vt.edu/ Virginia Tech]'s [https://mse.vt.edu/ Department of Materials Science and Engineering], [https://ece.vt.edu/ Department of Electrical and Computer Engineering], and [https://cpes.vt.edu/ Center for Power Electronics Systems]
 
* [https://ieeexplore.ieee.org/abstract/document/9224960 Effects of Co3O4 Addition on Magnetic properties of NiCuZn Ferrite Feedstock for 3D-printing Power Magnetic Components] by a team from [https://vt.edu/ Virginia Tech]'s [https://mse.vt.edu/ Department of Materials Science and Engineering], [https://ece.vt.edu/ Department of Electrical and Computer Engineering], and [https://cpes.vt.edu/ Center for Power Electronics Systems]

Revision as of 17:32, 26 January 2021

Below is a list of published works citing Hyrel equipment.

219 documents as of 25 Jan 2021.

Non-Traditional Manufacturing

Including Antennas, Sensors, Inductors, and Circuits; Combined Manufacturing Techniques; and Electro-Spinning or Electro-Melt-Spinning

Published in 2020

Published in 2019

Published in 2018

Published in 2017

Published in 2016

Published in 2015

Unheated or Chilled Reservoir Printing

Published in 2021

Published in 2020

Published in 2019

Published in 2018

Published in 2017

Published in 2016

Published in 2015

Published in 2014

Heated Reservoir Printing

Published in 2020

Published in 2019

Published in 2018

Published in 2017

Filament Printing

Published in 2021

Published in 2020

Published in 2019

Published in 2018

Published in 2017

Published in 2016