Difference between revisions of "Published Papers"

From Hyrel3D
Jump to: navigation, search
(Count)
(Published in 2022)
Line 329: Line 329:
 
==== Published in 2022 ====
 
==== Published in 2022 ====
  
 +
* [https://pubs.acs.org/doi/abs/10.1021/acsapm.2c00933 Alginate–Sodium Sulfate Decahydrate Phase Change Composite with Extended Stability] by a team from [https://www.ornl.gov/division/csd Chemical Sciences Division, Oak Ridge National Laboratory], [https://www.ornl.gov/division/buildings-and-transportation-science Building and Transportation Sciences Division, Oak Ridge National Laboratory], and the [https://chem.utk.edu/ Department of Chemistry, University of Tennessee, Knoxville]
 
* [https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/62f67a4342ddf53f75b8d40c/original/continuous-non-destructive-detection-of-microorganism-growth-at-buried-interfaces-with-vascularized-polymers.pdf Continuous, Non-Destructive Detection of Microorganism Growth at Buried Interfaces with Vascularized Polymers] by a team from the [https://gsbse.umaine.edu/ Biomedical Science and Engineering, University of Maine], the [https://mems.duke.edu/ Department of Mechanical Engineering and Material Science, Duke University], and the [Pritzker School of Molecular Engineering, University of Chicago https://pme.uchicago.edu/]
 
* [https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/62f67a4342ddf53f75b8d40c/original/continuous-non-destructive-detection-of-microorganism-growth-at-buried-interfaces-with-vascularized-polymers.pdf Continuous, Non-Destructive Detection of Microorganism Growth at Buried Interfaces with Vascularized Polymers] by a team from the [https://gsbse.umaine.edu/ Biomedical Science and Engineering, University of Maine], the [https://mems.duke.edu/ Department of Mechanical Engineering and Material Science, Duke University], and the [Pritzker School of Molecular Engineering, University of Chicago https://pme.uchicago.edu/]
 
* [https://link.springer.com/article/10.1007/s00170-022-09815-8 Comparing the Cpabilities of Vibration-Assisted Printing (VAP) and Direct-Write Additive Manufacturing Techniques] by a team from [https://engineering.purdue.edu/Zucrow Purdue University] and [https://nps.edu/web/mae Naval Postgraduate School]
 
* [https://link.springer.com/article/10.1007/s00170-022-09815-8 Comparing the Cpabilities of Vibration-Assisted Printing (VAP) and Direct-Write Additive Manufacturing Techniques] by a team from [https://engineering.purdue.edu/Zucrow Purdue University] and [https://nps.edu/web/mae Naval Postgraduate School]

Revision as of 12:21, 6 September 2022

Below is a list of published works citing Hyrel equipment.

Count

361 documents as of 6 September, 2022.

Non-Traditional Manufacturing

Including Antennas, Sensors, Inductors, and Circuits; Combined Manufacturing Techniques; Electro-Spinning or Electro-Melt-Spinning or Melt Electro-Writing (MEW); also printing with Embedded Fibers and combining FDM with DIW or MEW.

Published in 2022

Published in 2021

Published in 2020

Published in 2019

Published in 2018

Published in 2017

Published in 2016

Published in 2015

Unheated or Chilled Reservoir Printing (DIW)

Also known as Robocasting or DIW (Direct Ink Writing).

Published in 2022

Published in 2021

Published in 2020

Published in 2019

Published in 2018

Published in 2017

Published in 2016

Published in 2015

Published in 2014

Heated Reservoir Printing (DPE, HME)

Also known as DPE (Direct Powder Extrusion) or HME (Hot Melt Extrusion).

Published in 2022

Published in 2021

Published in 2020

Published in 2019

Published in 2018

Published in 2017

Filament Printing (HME, FFF, FDM)

Also known as HME (Hot Melt Extrusion), FFF (Fused Filament Fabrication), or FDM (Fused Deposition Modeling).

Published in 2022

Published in 2021

Published in 2020

Published in 2019

Published in 2018

Published in 2017

Published in 2016